Возможен ли сверхсветовой полёт? Что такое скорость света? Сверхсветовое движение в фантастике

В (локально) инерциальной системе отсчёта с началом рассмотрим материальную точку, которая в момент времени находится в . Скорость этой точки мы называем сверхсветовой в момент , если выполняется неравенство:

Style="max-width: 98%; height: auto; width: auto;" src="/pictures/wiki/files/50/21ea15551d469cba11529bd16574e427.png" border="0">

где , - это скорость света в вакууме, а время и расстояние от точки до измеряются в упомянутой системе отсчёта.

где - радиус-вектор в невращающейся системе координат, - вектор угловой скорости вращения системы координат. Как видно из уравнения, в неинерциальной системе отсчёта, связанной с вращающимся телом, удалённые объекты могут двигаться со сверхсветовой скоростью , в том смысле, что style="max-width: 98%; height: auto; width: auto;" src="/pictures/wiki/files/54/6fa9a2d9089db2f154c5c90051ce210b.png" border="0">. Это не вступает в противоречие со сказанным во введении, так как . Например, для системы координат связанной с головой человека, находящегося на Земле, координатная скорость движения Луны при обычном повороте головы будет больше скорости света в вакууме. В этой системе при повороте за маленькое время Луна опишет дугу с радиусом приблизительно равным расстоянию между началом системы координат (головой) и Луной.

Фазовая скорость

Фазовая скорость вдоль направления, отклонённого от волнового вектора на угол α. Рассматривается монохроматическая плоская волна.

Труба Красникова

Квантовая механика

Принцип неопределённости в квантовой теории

В квантовой физике состояния частиц описываются векторами гильбертового пространства, которые определяют лишь вероятность получения при измерениях определённых значений физических величин (в соответствии с квантовым принципом неопределённости). Наиболее известно представление этих векторов волновыми функциями , квадрат модуля которых определяет плотность вероятности обнаружения частицы в данном месте. При этом оказывается, что эта плотность может двигаться быстрее скорости света (например, при решении задачи о прохождении частицы через энергетический барьер). При этом эффект превышения скорости света наблюдается только на небольших расстояниях. Ричард Фейнман в своих лекциях выражался об этом так :

… для электромагнитного излучения существует также [ненулевая] амплитуда вероятности двигаться быстрее (или медленнее), чем обычная скорость света. Вы убедились на предыдущей лекции, что свет не всегда двигается только по прямым линиям; сейчас вы увидите, что он не всегда движется со скоростью света! Это может казаться удивительным, что существует [ненулевая] амплитуда для того, чтобы фотон двигался быстрее или медленнее, чем обычная скорость света c

Оригинальный текст (англ.)

… there is also an amplitude for light to go faster (or slower) than the conventional speed of light. You found out in the last lecture that light doesn’t go only in straight lines; now, you find out that it doesn’t go only at the speed of light! It may surprise you that there is an amplitude for a photon to go at speeds faster or slower than the conventional speed, c

Ричард Фейнман, нобелевский лауреат по физике 1965 года.

При этом в силу принципа неразличимости нельзя сказать, ту же ли самую частицу мы наблюдаем, или её новорождённую копию. В своей нобелевской лекции в 2004 году Франк Вилчек привёл следующее рассуждение: :

Представьте себе частицу, двигающуюся в среднем со скоростью, очень близкой к скорости света, но с такой неопределённостью в положении, как этого требует квантовая теория. Очевидно, будет определённая вероятность наблюдать эту частицу двигающейся несколько быстрее, чем в среднем, и, следовательно, быстрее света, что противоречит специальной теории относительности. Единственный известный способ разрешить это противоречие требует привлечения идеи античастиц. Очень грубо говоря, требуемая неопределённость в положении достигается допущением, что акт измерения может затрагивать образование античастиц, каждая из которых неотличима от оригинала, с различными расположениями. Для сохранения баланса сохраняющихся квантовых чисел, дополнительные частицы должны сопровождаться тем же числом античастиц. (Дирак пришёл к предсказанию античастиц через последовательность изобретательных интерпретаций и реинтерпретаций элегантного релятивистского волнового уравнения, которое он вывел, а не через эвристическое рассмотрение, подобное тому, которое я привёл. Неизбежность и всеобщность этих выводов, а также их прямое отношение к базовым принципам квантовой механики и специальной теории относительности стали очевидны только в ретроспективе).

Оригинальный текст (англ.)

Imagine a particle moving on average at very nearly the speed of light, but with an uncertainty in position, as required by quantum theory. Evidently it there will be some probability for observing this particle to move a little faster than average, and therefore faster than light, which special relativity won’t permit. The only known way to resolve this tension involves introducing the idea of antiparticles. Very roughly speaking, the required uncertainty in position is accommodated by allowing for the possibility that the act of measurement can involve the creation of several particles, each indistinguishable from the original, with different positions. To maintain the balance of conserved quantum numbers, the extra particles must be accompanied by an equal number of antiparticles. (Dirac was led to predict the existence of antiparticles through a sequence of ingenious interpretations and re-interpretations of the elegant relativistic wave equation he invented, rather than by heuristic reasoning of the sort I’ve presented. The inevitability and generality of his conclusions, and their direct relationship to basic principles of quantum mechanics and special relativity, are only clear in retrospect).

Франк Вилчек

Эффект Шарнхорста

Скорость волн зависит от свойств среды, в которой они распространяются. Специальная теория относительности утверждает, что разогнать массивное тело до скорости, превышающей скорость света в вакууме, невозможно. В то же время теория не постулирует какое-то конкретное значение для скорости света. Она измеряется экспериментальным путём и может различаться в зависимости от свойств вакуума . Для вакуума, энергия которого меньше энергии обычного физического вакуума , скорость света теоретически должна быть выше , а максимально допустимая скорость передачи сигналов определяется максимально возможной плотностью отрицательной энергии . Одним из примеров такого вакуума является вакуум Казимира , возникающий в тонких щелях и капиллярах размером (диаметром) до десятка нанометров (примерно в сто раз больше размеров типичного атома). Этот эффект можно также объяснить уменьшением количества виртуальных частиц в вакууме Казимира, которые подобно частицам сплошной среды замедляют распространение света. Вычисления, сделанные Шарнхорстом , говорят о превышении скорости света в вакууме Казимира по сравнению с обычным вакуумом на 1/10 24 для щели шириной 1 нм. Было также показано, что превышение скорости света в вакууме Казимира не ведёт к нарушению принципа причинности . Превышение скорости света в вакууме Казимира по сравнению со скоростью света в обычном вакууме экспериментально пока не подтверждено из-за чрезвычайной сложности измерения данного эффекта .

Теории с переменностью скорости света в вакууме

В современной физике существуют гипотезы, согласно которым скорость света в вакууме не является константой, и её значение может изменяться с течением времени (Variable Speed of Light (VSL)) . В наиболее распространенной версии этой гипотезы предполагается, что в начальные этапы жизни нашей вселенной значение константы (скорость света) было значительно больше, чем сейчас. Соответственно, раньше вещество могло двигаться со скоростью, значительно превосходящей современную скорость света.

Сверхсветовое движение в фантастике

См. также

Примечания

  1. Ландау, Л. Д. , Лифшиц, Е. М. Теория поля. - Издание 6-е, исправленно и дополненное. - М .: Наука , 1973. - 504 с. - («Теоретическая физика» , том II).
  2. Петр Маковецкий Смотри в корень!
  3. Классическая механика используется и в настоящее время для описания материальных тел, движущихся со скоростями существенно меньшими скорости света и расположенными вне существенных искривлений пространства-времени.
  4. Лекция № 24 по теоретической механике
  5. Данное уравнение теоретической механики из раздела «кинематика точки »
  6. FTL
  7. Если Луна не находится в зените.
  8. Физическая энциклопедия OnLine. Том 5, стр.266.
  9. M. Alcubierre The warp drive: hyper-fast travel within general relativity. - Class. Quant. Grav. 11, L73-L77 (1994)., копия на arxiv.org:
  10. Charles T. Ridgely A Macroscopic Approach to Creating Exotic Matter
  11. Feynman Chapter 3 // QED. - С. 89.

Со школьной скамьи нас учили - превысить скорость света невозможно, и поэтому перемещение человека в космическом пространстве является большой неразрешимой проблемой (как долететь до ближайшей солнечной системы, если свет сможет преодолеть это расстояние только за несколько тысяч лет?). Возможно, американские ученые нашли способ летать на сверхскоростях, не только не обманув, но и следуя фундаментальным законам Альберта Эйнштейна. Во всяком случае так утверждает автор проекта двигателя деформации пространства Гарольд Уайт.

Мы в редакции сочли новость совершенно фантастической, поэтому сегодня, в преддверии Дня космонавтики, публикуем репортаж Константина Какаеса для журнала Popular Science о феноменальном проекте NASA, в случае успеха которого человек сможет отправиться за пределы Солнечной системы.

В сентябре 2012 года несколько сотен ученых, инженеров и космических энтузиастов собрались вместе для второй публичной встречи группы под названием 100 Year Starship. Группой руководит бывший астронавт Май Джемисон, и основана она DARPA. Цель конференции - «сделать возможным путешествие человека за пределы Солнечной системы к другим звездам в течение ближайших ста лет». Большинство участников конференции признают, что подвижки в пилотируемом изучении космического пространства слишком незначительны. Несмотря на миллиарды долларов, затраченных в последние несколько кварталов, космические агентства могут почти столько же, сколько могли в 1960-х. Собственно, 100 Year Starship созвана, чтобы все это исправить.

Но ближе к делу. Спустя несколько дней конференции ее участники дошли до самых фантастических тем: регенерация органов, проблема организованной религии на борту корабля и так далее. Одна из наиболее любопытных презентаций на собрании 100 Year Starship называлась «Механика деформационного поля 102», и провел ее Гарольд «Сонни» Уайт из NASA. Ветеран агентства, Уайт руководит продвинутой импульсной программой в космическом центре Джонсона (JSC). Вместе с пятью коллегами он создал «Дорожную карту космических двигательных систем», которая озвучивает цели NASA в ближайших космических путешествиях. На плане перечисляются все виды двигательных проектов: от усовершенствованных химических ракет до далеко идущих разработок, вроде антиматерии или ядерных машин. Но область исследований Уайта самая футуристичная из всех: она касается двигателя деформации пространства.

так обычно изображают пузырь Алькубьерре

Согласно плану, такой двигатель обеспечит перемещения в пространстве со скоростью, превышающей скорость света. Общепризнанно, что это невозможно, поскольку является явным нарушением теории относительности Эйнштейна. Но Уайт утверждает обратное. В качестве подтверждения своих слов он апеллирует к так называемым пузырям Алькубьерре (уравнения, выходящие из теории Эйнштейна, согласно которым тело в космическом пространстве способно достигать сверхсветовых скоростей, в отличие от тела в нормальных условиях). В презентации он рассказал, как недавно сумел добиться теоретических результатов, которые напрямую ведут к созданию реального двигателя деформации пространства.

Понятно, что звучит это все совершенно фантастически: подобные разработки - это настоящая революция, которая развяжет руки всем астрофизикам мира. Вместо того, чтобы тратить 75 тысяч лет на путешествие к Альфа-Центавре, ближайшей к нашей звездной системе, астронавты на корабле с таким двигателем смогут совершить это путешествие за пару недель.


В свете закрытия программы запуска шаттлов и все возрастающей роли частных полетов к околоземной орбите NASA заявляет, что переориентируется на далекоидущие, намного более смелые планы, выходящие далеко за рамки путешествий на Луну. Достичь этих целей можно только с помощью развития новых двигательных систем - чем быстрее, тем лучше. Несколько дней спустя после конференции глава NASA Чарльз Болден, повторил слова Уайта: «Мы хотим перемещаться быстрее скорости света и без остановок на Марсе».

ОТКУДА МЫ ЗНАЕМ ПРО ЭТОТ ДВИГАТЕЛЬ

Первое популярное использование выражения «двигатель деформации пространства» датируется 1966 годом, когда Джен Родденберри выпустил «Звездный путь». Следующие 30 лет этот двигатель существовал только как часть этого фантастического сериала. Физик по имени Мигель Алькубьерре посмотрел один из эпизодов этого сериала как раз в тот момент, когда трудился над докторской в области общей теории относительности и задавался вопросом, возможно ли создание двигателя деформации пространства в реальности. В 1994 году он опубликовал документ, излагающий эту позицию.


Алькубьерре представил в космосе пузырь. В передней части пузыря время-пространство сокращается, а в задней - расширяется (как было при Большом взрыве, по мнению физиков). Деформация заставит корабль гладко скользить в космическом пространстве, как если бы он серфил на волне, несмотря на окружающий шум. В принципе деформированный пузырь может двигаться сколько угодно быстро; ограничения в скорости света, по теории Эйнштейна, распространяются только в контексте пространства-времени, но не в таких искажениях пространства-времени. Внутри пузыря, как предполагал Алькубьерре, пространство-время не изменится, а космическим путешественникам не будет нанесено никакого вреда.

Уравнения Эйнштейна в общей теории относительности сложно решить в одном направлении, выясняя, как материя искривляет пространство, но это осуществимо. Используя их, Алькубьерре определил, что распределение материи есть необходимое условие для создания деформированного пузыря. Проблема только в том, что решения приводили к неопределенной форме материи под названием отрицательная энергия.

Говоря простым языком, гравитация - это сила притяжения между двумя объектами. Каждый объект вне зависимости от его размеров оказывает некоторую силу притяжения на окружающую материю. По мнению Эйнштейна, эта сила является искривлением пространства-времени. Отрицательная энергия, однако, гравитационно отрицательна, то есть отталкивающа. Вместо того чтобы соединять время и пространство, отрицательная энергия отталкивает и разобщает их. Грубо говоря, чтобы такая модель работала, Алькубьерре необходима отрицательная энергия, чтобы расширять пространство-время позади корабля.

Несмотря на то, что никто и никогда особенно не измерял отрицательную энергию, согласно квантовой механике, она существует, а ученые научились создавать ее в лабораторных условиях. Один из способов ее воссоздания - через Казимиров эффект: две параллельно проводящие пластины, расположенные близко друг к другу, создают некоторое количество отрицательной энергии. Слабое место модели Алькубьерре в том, что для ее осуществления требуется огромное количество отрицательной энергии, на несколько порядков выше, чем, по оценкам ученых, ее можно произвести.

Уайт говорит, что он нашел, как пойти в обход этого ограничения. В компьютерном симуляторе Уайт изменил геометрию деформационного поля так, что в теории он мог бы производить деформированный пузырь, используя в миллионы раз меньше отрицательной энергии, чем требовалось по оценкам Алькубьерра, и, возможно, достаточно мало, чтобы космический корабль мог нести средства его производства. «Открытия, - говорит Уайт, - меняют метод Алькубьерре с непрактичного на вполне правдоподобный».

РЕПОРТАЖ ИЗ ЛАБОРАТОРИИ УАЙТА

Космический центр Джонсона расположился рядом с лагунами Хьюстона, откуда открывается путь к заливу Гальвестон. Центр немного напоминает пригородный кампус колледжа, только направленный на подготовку астронавтов. В день моего посещения Уайт встречает меня в здании 15, многоэтажном лабиринте коридоров, офисов и лабораторий, в которых проводятся испытания двигателя. На Уайте рубашка поло с эмблемой Eagleworks (так он называет свои эксперименты по созданию двигателя), на которой вышит орел, парящий над футуристическим космическим кораблем.


Уайт начинал свою карьеру с работы инженером - проводил исследования в составе роботической группы. Со временем он взял на себя командование всем крылом, занимающимся роботами на МКС, одновременно заканчивая писать докторскую в области физики плазмы. Только в 2009-м он сменил свои интересы на изучение движения, и эта тема захватила его настолько, что стала основной причиной, по которой он отправился работать на NASA.

«Он довольно необычный человек, - говорит его босс Джон Эпплуайт, возглавляющий отделение двигательных систем. - Он совершенно точно большой фантазер, но одновременно и талантливый инженер. Он умеет превращать свои фантазии в реальный инженерный продукт». Примерно в то же время, когда он присоединился к NASA, Уайт попросил разрешения открыть собственную лабораторию, посвященную продвинутым двигательным системам. Он сам и придумал название Eagleworks и даже попросил NASA создать логотип для его специализации. Тогда и началась эта работа.

Уайт ведет меня к своему офису, который делит с коллегой, занимающимся поисками воды на Луне, а после ведет вниз к Eagleworks. На ходу он рассказывает мне про свою просьбу открыть лабораторию и называет это «долгим трудным процессом поиска продвинутого движения, чтобы помочь человеку исследовать космос».

Уайт демонстрирует мне объект и показывает его центральную функцию - нечто, что он называет «квантовый вакуумный плазменный двигатель» (QVPT). Это приспособление внешне похоже на огромный красный бархатный пончик с проводами, плотно оплетающими сердцевину. Это одна из двух инициатив Eagleworks (вторая - деформационный двигатель). Еще это секретная разработка. Когда я спрашиваю, что это, Уайт отвечает, что может сказать только, что эта технология даже круче, чем деформационный двигатель). Согласно отчету NASA за 2011 год, написанному Уайтом, аппарат использует квантовые флуктации в пустом пространстве в качестве источника топлива, а значит, космический корабль, приводимый в движение QVPT, не требует топлива.


Двигатель использует квантовые флуктации в пустом пространстве в качестве источника топлива,
а значит, космический корабль,
приводимый в движение QVPT, не требует топлива.

Когда девайс работает, система Уайта выглядит кинематографически идеально: цвет лазера красный, и два луча скрещены, как сабли. Внутри кольца находятся четыре керамических конденсатора, сделанных из титаната бария, который Уайт заряжает до 23 тысяч вольт. Уайт провел последние два с половиной года, разрабатывая эксперимент, и он говорит, что конденсаторы демонстрируют огромную потенциальную энергию. Однако, когда я спрашиваю, как создать отрицательную энергию, необходимую для деформированного пространства-времени, он уклоняется от ответа. Он объясняет, что подписал соглашение о неразглашении, и потому не может раскрывать подробности. Я спрашиваю, с кем он заключал эти соглашения. Он говорит: «С людьми. Они приходят и хотят поговорить. Больше подробностей я вам сообщить не могу».

ПРОТИВНИКИ ИДЕИ ДВИГАТЕЛЯ

Пока что теория деформированного путешествия довольно интуитивна - деформация времени и пространства, чтобы создать движущийся пузырь, - и в ней есть несколько значительных недостатков. Даже если Уайт значительно уменьшит количество отрицательной энергии, запрашиваемой Алькубьерре, ее все равно потребуется больше, чем способны произвести ученые, заявляет Лоуренс Форд, физик-теоретик в университете Тафтс, за последние 30 лет написавший множество статей на тему отрицательной энергии. Форд и другие физики заявляют, что есть фундаментальные физические ограничения, причем дело не столько в инженерных несовершенствах, сколько в том, что такое количество отрицательной энергии не может существовать в одном месте длительное время.

Другая сложность: для создания деформационного шара, который двигается быстрее света, ученым потребуется произвести отрицательную энергию вокруг космического корабля и в том числе над ним. Уайт не считает, что это проблема; он весьма туманно отвечает, что двигатель, скорее всего, будет работать благодаря некоему имеющемуся «аппарату, который создает необходимые условия». Однако создание этих условий перед кораблем будет означать обеспечение постоянной поставки отрицательной энергии, перемещаемой быстрей скорости света, что снова противоречит общей теории относительности.

Наконец, двигатель деформации пространства ставит концептуальный вопрос. В общей теории относительности путешествие на сверхсветовой скорости эквивалентно путешествию во времени. Если такой двигатель реален, Уайт создает машину времени.

Эти препятствия рождают некоторые серьезные сомнения. «Не думаю, что известная нам физика и ее законы позволяют допустить, что он чего-то добьется своими экспериментами», - говорит Кен Олум, физик из университета Тафтс, который также участвовал в дебатах насчет экзотического движения на собрании «100-летия звездного корабля». Ноа Грэхам, физик из колледжа Миддлбёри, читавший две работы Уайта по моей просьбе, написал мне e-mail: «Не вижу ценных научных доказательств, помимо отсылок к его предыдущим работам».

Алькубьерре, ныне физик в Национальном автономном университете Мексики, и сам высказывает сомнение. «Даже если я стою на космическом корабле и у меня есть в наличии отрицательная энергия, мне ни за что не поместить ее туда, куда требуется, - говорит он мне по телефону из своего дома в Мехико. - Нет, идея-то волшебная, мне нравится, я же ее сам и написал. Но в ней есть пара серьезных недостатков, которые я уже сейчас, с годами, вижу, и я не знаю ни единого способа их исправить».

БУДУЩЕЕ СВЕРХСКОРОСТЕЙ

Слева от главных ворот Джонсонского научного центра лежит на боку ракета «Сатурн-В», ее ступени разъединены для демонстрации внутреннего содержимого. Он гигантский - размер одного из множества двигателей равен размеру маленького автомобиля, а сама ракета на пару футов длиннее, чем футбольное поле. Это, конечно, вполне красноречивое свидетельство особенностей космического плавания. Кроме того, ей 40 лет, и время, которое она представляет - когда NASA было частью огромного национального плана по отправлению человека не Луну, - давно прошло. Сегодня JSC - это просто место, которое когда-то было великим, но с тех пор покинуло космический авангард.

Прорыв в движении может означать новую эру для JSC и NASA, и в какой-то степени часть этой эры начинается уже сейчас. Зонд Dawn («Рассвет»), запущенный в 2007-м, изучает кольцо астероидов при помощи ионных двигателей. В 2010-м японцы ввели в эксплуатацию «Икар», первый межпланетный звездный корабль, приводимый в движение солнечным парусом, еще один вид экспериментального движения. И в 2016-м ученые планируют испытать VASMIR, систему, работающую на плазме, сделанную специально для высокой двигательной тяги в ISS. Но когда эти системы, возможно, доставят астронавтов на Марс, они все еще не будут способны забросить их за пределы Солнечной системы. Чтобы добиться этого, по словам Уайта, NASA потребуется пойти на более рискованные проекты.


Деформационный двигатель - возможно, самое притянутое за уши из насовских усилий по созданию проектов движения. Научное сообщество заявляет, что Уайт не может создать его. Эксперты заявляют, что он работает против законов природы и физики. Несмотря на это, за проектом стоит NASA. «Его субсидируют не на том высоком государственном уровне, на котором должны были бы, - говорит Апплуайт. - Я думаю, что у дирекции есть какой-то особенный интерес в том, чтобы он продолжал свою работу; это одна из тех теоретических концепций, в случае успехов которых игра меняется полностью».

В январе Уайт собрал свой деформационный интерферометр и двинулся к следующей цели. Eagleworks перерос собственный дом. Новая лаборатория больше и, как он заявляет с энтузиазмом, «сейсмически изолирована», имея в виду, что он защищен от колебаний. Но, возможно, лучшее в новой лаборатории (и самое впечатляющее) - то, что NASA создало Уайту такие же условия, что были у Нила Армстронга и Базза Олдрина на Луне. Что ж, посмотрим.

СВЕРХСВЕТОВАЯ СКОРОСТЬ

Скорость, превышающая скорость света. относительности теории, передача любых сигналов и движениематериальных тел не может происходить со скоростью, большей скорости светав вакууме с. Однако всякий колебат. процесс характеризуется двумяразл. скоростями распространения: групповой скоростью = и фазовойскоростью ,где w п k - частота и волновой вектор волны. u гр определяетскорость переноса энергии группой волн с близкими частотами. Поэтому всоответствии с принципом относительности u гр любого колебат. с. Напротив, w фаз, к-раяхарактеризует скорость распространения фазы каждой монохроматич. составляющейэтой группы волн, не связана с переносом энергии в волне. Поэтому она можетпринимать любые значения, в частности и значения > с. В последнемслучае о ней говорят как о С. с.

Простейший пример С. с.- фазовая скорость распространения эл.-магн. , где k z - проекция волнового вектора fc на ось волновода z. Волновой вектор fc связан с частотой со соотношением k 2 = w 2 /с 2 , где ,а - проекцияволнового вектора k на поперечное сечение волновода z = const. Тогдаw фаз волны вдоль оси волновода

будет больше с, a

меньше с.

Приведём ещё один пример существования С. с. Если вращать электронныйпучок с помощью соответствующей электронной пушки вокруг нек-рой оси сугл. скоростью ,то линейная скорость пятна от пучка электронов на достаточно больших расстояниях R от оси может стать больше скоростисвета. Однако перемещение электронного пятна от пушки по окружности радиусаR 0 со скоростью эквивалентно перемещению в пространстве фазы пучка. Энергия пучка при этомпереносится в радиальном направлении и скорость переноса не может статьбольше с.

При распространении сигнала в среде с показателем преломления п волновойвектор fc эл.-магн. волны и её частота удовлетворяют соотношению В этом случае u фаз = с/п. Для среды с п < 1 и фаз с. Пример такой среды - полностью ионизованная плазма, у к-рой , где е и т - заряд и масса электрона, а N - плотностьэлектронов в плазме. В среде с п 1 >u фаз = с/п< с. Однако в этом случае возможно реальное движение материальныхчастиц со скоростью v, большей скорости света в среде (т. е. Движение заряж. частиц с такой скоростью (v с/п, но v < с!) приводит к возникновению Черенкова - Вавиловаизлучения.

Лит.: Вайнштейн Л. А., Электромагнитные волны, 2 изд., М., 1988;Гинзбург В. Л., Теоретическая физика и астрофизика, 3 изд., М., 1987; БолотовскийБ. М., Быков В. П., Излучение при сверхсветовом движении зарядов, «УФН»,1990, т. 160. в. 6, с. 141. С. Я. Столяров.

  • - физическое понятие, обозначающее путь, проходимый к.-н. движущимся телом в единицу времени, напр. в 1 сек. Обычно берется средняя С, являющаяся результатом сложения всех разновременно отмеченных С. и деления...

    Сельскохозяйственный словарь-справочник

  • - невозможна, согласно специальной теории относительности, для реально существующих и обладающих массой покоя частиц, но возможна как фазовая скорость в любой среде, либо как скорость какой-либо частицы в среде,...
  • - одна из основных кинематических характеристик движения материальных тел, численно равная величине пути, пройденному за единицу времени...

    Начала современного Естествознания

  • - одна из основных характеристик движения материальной точки...

    Астрономический словарь

  • - 1983, 93 мин., цв., ш/э, ш/ф, 1то. жанр: драма...

    Ленфильм. Аннотированный каталог фильмов (1918-2003)

  • - численно равна расстоянию, проходимому кораблём в единицу времени; определяется лагом. Для надводных кораблей различают: наибольшую; полную; экономическую; наименьшую...

    Словарь военных терминов

  • - степени продолжительности перевозки грузов по железным дорогам...
  • - см. малая...

    Справочный коммерческий словарь

  • - характеристика поступательного движения точки, численно равная при равномерном движении отношению пройденного пути s к промежуточному времени t, то есть v= s/t. При вращательном движении тела пользуются понятием...

    Современная энциклопедия

  • - характеристика движения точки, численно равная при равномерном движении отношению пройденного пути s к промежутку времени t, т.е. v=s/t. Вектор С. направлен по касательной к траектории тела. При вращат....

    Естествознание. Энциклопедический словарь

  • - : Смотри также: - скорость химической реакции - скорость спекания - скорость деформирования - скорость деформации - скорость волочения - критическая скорость закалки - скорость нагрева - скорость тепловой...

    Энциклопедический словарь по металлургии

  • Большой экономический словарь

  • - степень быстроты движения, распространения действия...

    Большой бухгалтерский словарь

  • - - Понятие о С. получается из понятий о средней С. в пути и средней С. перемещения...

    Энциклопедический словарь Брокгауза и Евфрона

  • - I Ско́рость в механике, одна из основных кинематических характеристик движения точки, равная численно при равномерном движении отношению пройденного пути s к промежутку времени t, за который этот путь...

    Большая Советская энциклопедия

  • - характеристика движения точки, численно равная при равномерном движении отношению пройденного пути s к промежутку времени t, т. е. ? = s / t. При вращательном движении тела пользуются понятием угловой скорости...

    Большой энциклопедический словарь

"СВЕРХСВЕТОВАЯ СКОРОСТЬ" в книгах

Вид Скорость

автора Брэм Альфред Эдмунд

Вид Скорость

Из книги Жизнь животных, Том II, Птицы автора Брэм Альфред Эдмунд

Вид Скорость ____________________Серый журавль 50 км/часСеребристая чайкаБольшая морская чайкаЗяблик 55 км/часЧижЛасточка-касаткаДикий гусь 70-90 км/часСвиязьКулики (разные виды) 90 км/часЧерный стриж 110-150 км/часВставка 13, стр. 5Ошибочное представление, бытовавшее во времена Брема. Для

СКОРОСТЬ

Из книги Серебряная ива автора Ахматова Анна

СКОРОСТЬ Бедствие это не знает предела… Ты, не имея ни духа, ни тела, Коршуном злобным на мир налетела, Все исказила и всем овладела И ничего не взяла. 8 августа 1959, утро Комарово * * * Пространство выгнулось и пошатнулось время, Дух скорости ногой ступил на темя Великих гор

Скорость

Из книги Правда о Мумиях и Троллях автора Кушнир Александр

Скорость "Если чего-то хотеть - не сознательно, а всем существом - то это сбывается" Борис Гребенщиков Немного находилось в середине 90-х оптимистов, которые верили в возвраще-ние исчезнувшего на несколько лет "Мумий Тролля". Естественно, что об их прибли-зительном

267 Скорость

Из книги Внутренний свет. Календарь медитаций Ошо на 365 дней автора Раджниш Бхагван Шри

267 Скорость У каждого из нас своя скорость. Мы должны двигаться каждый со своей скоростью, в таком темпе, какой для нас естественен. Как только вы найдете правильный для себя темп, вы будете успевать гораздо больше. Ваши действия будут не лихорадочными, но более слаженными,

1.6. Может ли скорость обмена информацией превышать скорость света?

Из книги Квантовая магия автора Доронин Сергей Иванович

1.6. Может ли скорость обмена информацией превышать скорость света? Довольно часто приходится слышать, что эксперименты по проверке неравенств Белла, опровергающие локальный реализм, подтверждают наличие сверхсветовых сигналов. Это говорит о том, что информация способна

025: СКОРОСТЬ

Из книги Текст-1 автора Yarowrath

025: СКОРОСТЬ Попробуем подойти к расовому вопросу с точки зрения эмергенцизма. Живые существа – это вычислительные механизмы, называемые в рамках эмергенцизма зонами эмергенции. Эти механизмы различаются по своему уровню. Идёт постоянная война между среднеуровневыми

Скорость

Из книги Практическое руководство аборигена по выживанию при чрезвычайных обстоятельствах и умению полагаться только на себя автора Бигли Джозеф

Скорость Большинство из вас смутно представляет себе бешеную скорость распространения огня. Маленькое возгорание, если его оставить на самотёк, может превратиться в огромное горнило менее чем за 30 секунд. За 5 минут небольшой костёр охватит целое строение. Поэтому

Скорость, м/с

Из книги Краткий справочник необходимых знаний автора Чернявский Андрей Владимирович

Скорость, м/с Таблица

Скорость

Из книги Большая Советская Энциклопедия (СК) автора БСЭ

3. Скорость

Из книги Фармакологическая помощь спортсмену: коррекция факторов, лимитирующих спортивный результат автора Кулиненков Олег Семенович

3. Скорость Скоростные способности спортсменов высшей квалификации следует представить как способность в короткие промежутки времени (иначе: быстро, мгновенно, «взрывно») преодолевать внешнее сопротивление посредством мышечных напряжений, силы.Тренировочные занятия,

Скорость

Из книги Как тестируют в Google автора Уиттакер Джеймс

Скорость Методология ACC работает быстро: создание классификации ACC даже в сложных проектах занимало у нас меньше получаса. Это намного быстрее составления

Скорость тренировочного чтения должна в три раза превышать скорость обычного чтения

Из книги Скорочтение. Как запоминать больше, читая в 8 раз быстрее автора Камп Питер

Скорость тренировочного чтения должна в три раза превышать скорость обычного чтения Основное правило тренировок заключается в том, что если вы хотите читать с определенной скоростью, то вам нужно выполнять тренировочное чтение приблизительно в три раза быстрее. Так,

51. Скорость истечения в сужающемся канале, массовая скорость перемещения потока

Из книги Теплотехника автора Бурханова Наталья

51. Скорость истечения в сужающемся канале, массовая скорость перемещения потока Скорость истечения в сужающемся каналеРассмотрим процесс адиабатного истечения вещества. Предположим, что рабочее тело с некоторым удельным объемом (v1) находится в резервуаре под

§ 5.10 Космолучевая сверхсветовая связь

Из книги Баллистическая теория Ритца и картина мироздания автора Семиков Сергей Александрович

§ 5.10 Космолучевая сверхсветовая связь - Постой, но ведь все наши приборы говорят, что вне Земли нет жизни. - Я бы всё объяснил, но вы, земляне, до сих пор считаете, что E=mc2. Из фильма "Мой любимый марсианин" Астрономы и радиоастрономы приложили громадные усилия по поиску в

Традиционно обозначается латинской буквой « c {\displaystyle c} » (произносится как «цэ»). Скорость света в вакууме - фундаментальная постоянная , не зависящая от выбора инерциальной системы отсчёта (ИСО) . Она относится к фундаментальным физическим постоянным, которые характеризуют не просто отдельные тела или поля, а свойства геометрии пространства-времени в целом . Из постулата причинности (любое событие может оказывать влияние только на события, происходящие позже него и не может оказывать влияние на события, произошедшие раньше него ) и постулата специальной теории относительности о независимости скорости света в вакууме от выбора инерциальной системы отсчёта (скорость света в вакууме одинакова во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга ) следует, что скорость любого сигнала и элементарной частицы не может превышать скорость света . Таким образом, скорость света в вакууме - предельная скорость движения частиц и распространения взаимодействий.

В вакууме (пустоте)

Наиболее точное измерение скорости света 299 792 458 ± 1,2 / на основе эталонного метра было проведено в 1975 году .

На данный момент считают, что скорость света в вакууме - фундаментальная физическая постоянная , по определению, точно равная 299 792 458 м/с , или 1 079 252 848,8 км/ч . Точность значения связана с тем, что с 1983 года метр в Международной системе единиц (СИ) определён, как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды .

В природе со скоростью света распространяются (в вакууме):

Массивные частицы могут иметь скорость, приближающуюся почти вплотную к скорости света , но всё же не достигающую её точно. Например, околосветовую скорость, лишь на 3 м/сек меньше скорости света, имеют массивные частицы (протоны), полученные на ускорителе (Большой адронный коллайдер) или входящие в состав космических лучей . [ ]

В современной физике считается хорошо обоснованным утверждение, что причинное воздействие не может переноситься со скоростью, большей скорости света в вакууме (в том числе посредством переноса такого воздействия каким-либо физическим телом). Существует, однако, проблема «запутанных состояний » частиц, которые, судя по всему, «узнают» о состоянии друг друга мгновенно . Однако и в этом случае сверхсветовой передачи информации не происходит , поскольку для передачи информации таким способом необходимо привлечь дополнительный классический канал передачи со скоростью света .

Хотя в принципе движение каких-то объектов со скоростью, большей скорости света в вакууме, вполне возможно, однако это могут быть, с современной точки зрения, только такие объекты, которые не могут быть использованы для переноса информации с их движением (например - солнечный зайчик в принципе может двигаться по стене со скоростью большей скорости света, но никак не может быть использован для передачи информации с такой скоростью от одной точки стены к другой) .

Видео по теме

В прозрачной среде

Скорость света в прозрачной среде - скорость, с которой свет распространяется в среде, отличной от вакуума . В среде, обладающей дисперсией , различают фазовую и групповую скорость .

Фазовая скорость связывает частоту и длину волны монохроматического света в среде ( λ = c ν {\displaystyle \lambda ={\frac {c}{\nu }}} ). Эта скорость обычно (но не обязательно) меньше c {\displaystyle c} . Отношение скорости света в вакууме к фазовой скорости света в среде называется показателем преломления среды.

Групповая скорость света определяется как скорость распространения биений между двумя волнами с близкой частотой и в равновесной среде всегда меньше c {\displaystyle c} . Однако в неравновесных средах, например, сильно поглощающих, она может превышать c {\displaystyle c} . При этом, однако, передний фронт импульса всё равно движется со скоростью, не превышающей скорости света в вакууме. В результате сверхсветовая передача информации остаётся невозможной.

Инвариантность скорости света неизменно подтверждается множеством экспериментов . Существует возможность проверить экспериментально лишь то, что скорость света в «двустороннем» эксперименте (например, от источника к зеркалу и обратно) не зависит от системы отсчёта, поскольку невозможно измерить скорость света в одну сторону (например, от источника к удалённому приёмнику) без дополнительных договоренностей относительно того, как синхронизировать часы источника и приёмника. Однако, если применить для этого синхронизацию Эйнштейна, односторонняя скорость света становится равной двусторонней по определению .

Специальная теория относительности исследует последствия инвариантности c {\displaystyle c} в предположении, что законы физики одинаковы во всех инерциальных системах отсчёта . Одним из последствий является то, что c {\displaystyle c} - это та скорость, с которой должны двигаться в вакууме все безмассовые частицы и волны (в частности, и свет).

Специальная теория относительности имеет много экспериментально проверенных последствий, которые противоречат интуиции . Такие последствия включают: эквивалентность массы и энергии (E 0 = m c 2) {\displaystyle (E_{0}=mc^{2})} , сокращение длины (сокращение объектов во время движения) и замедление времени (движущиеся часы идут медленнее). Коэффициент , показывающий, во сколько раз сокращается длина и замедляется время, известен как фактор Лоренца (Лоренц-фактор)

γ = 1 1 − v 2 c 2 , {\displaystyle \gamma ={\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}},}

где v {\displaystyle v} - скорость объекта. Для скоростей гораздо меньших, чем c {\displaystyle c} (например, для скоростей, с которыми мы имеем дело каждый день) разница между γ {\displaystyle \gamma } и 1 настолько мала, что ею можно пренебречь. В этом случае специальная теория относительности хорошо аппроксимируется относительностью Галилея. Но на релятивистских скоростях разница увеличивается и стремится к бесконечности при приближении v {\displaystyle v} к c {\displaystyle c} .

Объединение результатов специальной теории относительности требует выполнения двух условий: (1) пространство и время являются единой структурой, известной как пространство-время (где c {\displaystyle c} связывает единицы измерения пространства и времени), и (2) физические законы удовлетворяют требованиям особой симметрии, которая называется инвариантность Лоренца (Лоренц-инвариантность), формула которой содержит параметр c {\displaystyle c} . Инвариантность Лоренца встречается повсеместно в современных физических теориях, таких как квантовая электродинамика , квантовая хромодинамика , стандартная модель физики элементарных частиц и общая теория относительности . Таким образом, параметр c {\displaystyle c} встречается повсюду в современной физике и появляется во многих смыслах, которые не имеют отношения собственно к свету. Например, общая теория относительности предполагает, что гравитация и гравитационные волны распространяются со скоростью c {\displaystyle c} . В неинерциальных системах отсчёта (в гравитационно искривлённом пространстве или в системах отсчёта, движущихся с ускорением), локальная скорость света также является постоянной и равна c {\displaystyle c} , однако скорость света вдоль траектории конечной длины может отличаться от c {\displaystyle c} в зависимости от того, как определено пространство и время .

Считается, что фундаментальные константы, такие как c {\displaystyle c} , имеют одинаковое значение во всём пространстве-времени, то есть они не зависят от места и не меняются со временем. Однако некоторые теории предполагают, что скорость света может изменяться со временем . Пока нет убедительных доказательств таких изменений, но они остаются предметом исследований .

Кроме того, считается, что скорость света изотропна, то есть не зависит от направления его распространения. Наблюдения за излучением ядерных энергетических переходов как функции от ориентации ядер в магнитном поле (эксперимент Гугса - Древера), а также вращающихся оптических резонаторов (эксперимент Майкельсона - Морли и его новые вариации), наложили жёсткие ограничения на возможность двусторонней анизотропии .

Событие A предшествует событию B в красной системе отсчёта (СО), одновременно с B в зелёной СО и происходит после B в синей СО

Вообще информация или энергия не могут передаваться в пространстве быстрее, чем со скоростью света. Один из аргументов в пользу этого следует из контринтуитивного заключения специальной теории относительности, известного как относительность одновременности . Если пространственное расстояние между двумя событиями А и В больше, чем промежуток времени между ними, умноженный на c {\displaystyle c} , то существуют такие системы отсчёта, в которых А предшествует B, и другие, в которых B предшествует А, а также такие, в которых события А и B одновременны. В результате, если объект двигался бы быстрее скорости света относительно некоторой инерциальной системы отсчёта, то в другой системе отсчёта он бы путешествовал назад во времени, и принцип причинности был бы нарушен . В такой системе отсчёта «следствие» можно было бы наблюдать раньше его «первопричины». Такое нарушение причинности никогда не наблюдалось . Оно также может приводить к парадоксам, таким как тахионный антителефон .

История измерений скорости света

Античные учёные, за редким исключением, считали скорость света бесконечной . В Новое время этот вопрос стал предметом дискуссий. Галилей и Гук допускали, что она конечна, хотя и очень велика, в то время как Кеплер , Декарт и Ферма по-прежнему отстаивали бесконечность скорости света.

Спустя полвека, в 1728 году, открытие аберрации позволило Дж. Брэдли подтвердить конечность скорости света и уточнить её оценку: полученное Брэдли значение составило 308 000 км/с .

Впервые измерения скорости света, основанные на определении времени прохождения светом точно измеренного расстояния в земных условиях, выполнил в 1849 году А. И. Л. Физо . В своих экспериментах Физо использовал разработанный им «метод прерываний», при этом расстояние, преодолеваемое светом, составляло 8,63 км. Полученное в результате выполненных измерений значение оказалось равным 313 300 км/с . В дальнейшем метод прерываний значительно усовершенствовали и использовали для измерений М. А. Корню (1876 г.), А. Ж. Перротен (1902 г.) и Э. Бергштранд . Измерения, выполненные Э. Бергштрандом в 1950 году, дали для скорости света значение 299 793,1 км/с , при этом точность измерений была доведена до 0,25 км/с .

Другой лабораторный метод («метод вращающегося зеркала»), идея которого была высказана в 1838 году Ф. Араго , в 1862 году осуществил Леон Фуко . Измеряя малые промежутки времени с помощью вращающегося с большой скоростью (512 об/с) зеркала, он получил для скорости света значение 298 000 км/с с погрешностью 500 км/с. Длина базы в экспериментах Фуко была сравнительно небольшой - двадцать метров . В последующем за счёт совершенствования техники эксперимента, увеличения используемой базы и более точного определения её длины точность измерений с помощью метода вращающегося зеркала была существенно повышена. Так, С. Ньюком в 1891 году получил значение 299 810 км/с с погрешностью 50 км/с, а А. А. Майкельсону в 1926 году удалось понизить погрешность до 4 км/с и получить для скорости величину 299 796 км/с . В своих экспериментах Майкельсон использовал базу, равную 35 373,21 м .

Дальнейший прогресс был связан с появлением мазеров и лазеров , которые отличаются очень высокой стабильностью частоты излучения, что позволило определять скорость света одновременным измерением длины волны и частоты их излучения. В начале 1970-х годов погрешность измерений скорости света приблизилась к 1 м/с . После проверки и согласования результатов, полученных в различных лабораториях, XV Генеральная конференция по мерам и весам в 1975 году рекомендовала использовать в качестве значения скорости света в вакууме величину, равную 299 792 458 м/с, с относительной погрешностью (неопределённостью) 4·10 -9 , что соответствует абсолютной погрешности 1,2 м/с .

Существенно, что дальнейшее повышение точности измерений стало невозможным в силу обстоятельств принципиального характера: ограничивающим фактором стала величина неопределённости реализации определения метра, действовавшего в то время. Проще говоря, основной вклад в погрешность измерений скорости света вносила погрешность «изготовления» эталона метра, относительное значение которой составляло 4·10 -9 . Исходя из этого, а также учитывая другие соображения, XVII Генеральная конференция по мерам и весам в 1983 году приняла новое определение метра, положив в его основу рекомендованное ранее значение скорости света и определив метр как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды .

Сверхсветовое движение

Из специальной теории относительности следует, что превышение скорости света физическими частицами (массивными или безмассовыми) нарушило бы принцип причинности - в некоторых инерциальных системах отсчёта оказалась бы возможной передача сигналов из будущего в прошлое. Однако теория не исключает для гипотетических частиц, не взаимодействующих с обычными частицами , движение в пространстве-времени со сверхсветовой скоростью.

Гипотетические частицы, движущиеся со сверхсветовой скоростью, называются тахионами . Математически движение тахионов описывается преобразованиями Лоренца как движение частиц с мнимой массой. Чем выше скорость этих частиц, тем меньше энергии они несут, и наоборот, чем ближе их скорость к скорости света, тем больше их энергия - так же, как и энергия обычных частиц, энергия тахионов стремится к бесконечности при приближении к скорости света. Это самое очевидное следствие преобразования Лоренца, не позволяющее массивной частице (как с вещественной, так и с мнимой массой) достичь скорости света - сообщить частице бесконечное количество энергии просто невозможно.

Следует понимать, что, во-первых, тахионы - это класс частиц, а не один вид частиц, и во-вторых, тахионы не нарушают принцип причинности, если они никак не взаимодействуют с обычными частицами .

Обычные частицы, движущиеся медленнее света, называются тардионами . Тардионы не могут достичь скорости света, а только лишь сколь угодно близко подойти к ней, так как при этом их энергия становится неограниченно большой. Все тардионы обладают массой , в отличие от безмассовых частиц, называемых люксонами . Люксоны в вакууме всегда движутся со скоростью света, к ним относятся фотоны , глюоны и гипотетические гравитоны .

C 2006 года показано, что в так называемом эффекте квантовой телепортации кажущееся взаимовлияние частиц распространяется быстрее скорости света. Например, в 2008 г. исследовательская группа доктора Николаса Гизена (Nicolas Gisin) из университета Женевы, исследуя разнесённые на 18 км в пространстве запутанные фотонные состояния, показала, что это кажущееся «взаимодействие между частицами осуществляется со скоростью, примерно в сто тысяч раз большей скорости света». Ранее также обсуждался так называемый «парадокс Хартмана » - кажущаяся сверхсветовая скорость при туннельном эффекте . Анализ этих и подобных результатов показывает, что они не могут быть использованы для сверхсветовой передачи какого-либо несущего информацию сообщения или для перемещения вещества .

В результате обработки данных эксперимента OPERA , набранных с 2008 по 2011 год в лаборатории Гран-Сассо совместно с ЦЕРН , было зафиксировано статистически значимое указание на превышение скорости света мюонными нейтрино . Сообщение об этом сопровождалось публикацией в архиве препринтов . Полученные результаты специалисты подвергли сомнению, поскольку они не согласуются не только с теорией относительности, но и с другими экспериментами с нейтрино . В марте 2012 года в том же тоннеле были проведены независимые измерения, и сверхсветовых скоростей нейтрино они не обнаружили . В мае 2012 года OPERA провела ряд контрольных экспериментов и пришла к окончательному выводу, что причиной ошибочного предположения о сверхсветовой скорости стал технический дефект (плохо вставленный разъём оптического кабеля) .

См. также

Комментарии

  1. От поверхности Солнца - от 8 мин. 8,3 сек. в перигелии до 8 мин. 25 сек. в афелии .
  2. Скорость распространения светового импульса в среде отличается от скорости его распространения в вакууме (меньше, чем в вакууме), и может быть различной для разных сред. Когда говорят просто о скорости света, обычно подразумевается именно скорость света в вакууме; если же говорят о скорости света в среде, это, как правило, оговаривается явно.
  3. В настоящее время наиболее точные методы измерения скорости света основаны на независимом определении значений длины волны λ {\displaystyle \lambda } и частоты ν {\displaystyle \nu } света или другого электромагнитного излучения и последующего расчёта в соответствии с равенством c = λ ν {\displaystyle c=\lambda \nu } .
  4. См. например «Частица Oh-My-God ».
  5. Аналогом может быть посылка наудачу двух заклеенных конвертов с белой и чёрной бумагой в разные места. Открытие одного конверта гарантирует, что во втором будет лежать второй лист - если первый чёрный, то второй белый, и наоборот. Эта «информация» может распространяться быстрее скорости света - ведь вскрыть второй конверт можно в любое время, и там всегда будет этот второй лист. При этом принципиальная разница с квантовым случаем состоит только в том, что в квантовом случае до «открытия конверта»-измерения состояние листа внутри принципиально неопределённо, как у кота Шрёдингера , и там может оказаться любой лист.
  6. Однако, частота света зависит от движения источника света относительно наблюдателя, благодаря эффекту Доплера
  7. В то время как движущиеся измеряемые объектов оказываются короче по линии относительного движения, они также выглядят повёрнутыми. Этот эффект, известный как вращение Террелла , связан с разницей во времени между пришедшими к наблюдателю сигналами от разных частей объекта.
  8. Считается, что эффект Шарнхорста позволяет сигналам распространяться немногим выше c {\displaystyle c} , но особые условия, при которых эффект может возникать, мешают применить этот эффект для нарушения принципа причинности

Примечания

  1. . Voyager - The Interstellar Mission . Jet Propulsion Laboratory, California Istitute of Technology. Проверено 12 июля 2011. Архивировано 3 февраля 2012 года.
  2. New galaxy "most distant" yet discovered
  3. , с. 169.
  4. , с. 122.
  5. Чудинов Э. М. Теория относительности и философия. - М.: Политиздат, 1974. - С. 222-227.
  6. , с. 167.
  7. , с. 170.
  8. , с. 184.
  9. Сажин М. В. Скорость света // Физика космоса. Маленькая энциклопедия / Гл. ред. Р. А. Сюняев . - 2-е изд. - М. : Советская энциклопедия , 1986. - С. 622. - 783 с.
  10. ГОСТ 8.417-2002. Государственная система обеспечения единства измерений. Единицы величин.
  11. Abbott B. P. et al. (LIGO Scientific Collaboration, Virgo Collaboration, Fermi Gamma-ray Burst Monitor, and INTEGRAL). Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A // The Astrophysical Journal. - 2017. - Vol. 848. - P. L13. - DOI :10.3847/2041-8213/aa920c . [исправить ]
  12. Болотовский Б. М., Гинзбург В. Л. // УФН. - 1972. - Т. 106 , № 4 . - С. 577-592 .
  13. Stachel, JJ. Einstein from "B" to "Z" – Volume 9 of Einstein studies . - Springer, 2002. - P. 226. - ISBN 0-8176-4143-2 .
  14. Einstein, A (1905). «Zur Elektrodynamik bewegter Körper» (German). Annalen der Physik 17 : 890–921. DOI :10.1002/andp.19053221004 . English translation: Perrett, W On the Electrodynamics of Moving Bodies . Fourmilab . Проверено 27 ноября 2009. Архивировано 1 февраля 2013 года.
  15. Александров Е. Б. Теория относительности: прямой эксперимент с кривым пучком // Химия и жизнь. - 2012. - № 3 .
  16. Hsu, J-P. Lorentz and Poincaré Invariance / J-P Hsu, Zhang. - World Scientific , 2001. - Vol. 8. - P. 543ff . - ISBN 981-02-4721-4 .
  17. Zhang, YZ. Special Relativity and Its Experimental Foundations . - World Scientific , 1997. - Vol. 4. - P. 172–3. - ISBN 981-02-2749-3 .
  18. d"Inverno, R. Introducing Einstein"s Relativity. - Oxford University Press , 1992. - P. 19–20. - ISBN 0-19-859686-3 .
  19. Sriranjan, B. Postulates of the special theory of relativity and their consequences // The Special Theory to Relativity. - PHI Learning , 2004. - P. 20 ff . - ISBN 81-203-1963-X .
  20. Roberts, T What is the experimental basis of Special Relativity? . Usenet Physics FAQ . University of California, Riverside (2007). Проверено 27 ноября 2009. Архивировано 1 февраля 2013 года.
  21. Terrell, J (1959). «Invisibility of the Lorentz Contraction». Physical Review 116 (4): 1041–5. DOI :10.1103/PhysRev.116.1041 . Bibcode : 1959PhRv..116.1041T .
  22. Penrose, R (1959). «The Apparent Shape of a Relativistically Moving Sphere». Proceedings of the Cambridge Philosophical Society 55 (01): 137–9. DOI :10.1017/S0305004100033776 . Bibcode : 1959PCPS...55..137P .
  23. Hartle, JB. Addison-Wesley , 2003. - P. 52–9. - ISBN 981-02-2749-3 .
  24. Hartle, JB. Gravity: An Introduction to Einstein"s General Relativity. - Addison-Wesley , 2003. - P. 332. - ISBN 981-02-2749-3 .
  25. The interpretation of observations on binary systems used to determine the speed of gravity is considered doubtful by some authors, leaving the experimental situation uncertain; seeSchäfer, G. Propagation of light in the gravitational filed of binary systems to quadratic order in Newton"s gravitational constant: Part 3: ‘On the speed-of-gravity controversy’ // Lasers, clocks and drag-free control: Exploration of relativistic gravity in space / G Schäfer, Brügmann. - Springer, 2008. - ISBN 3-540-34376-8 .
  26. Gibbs, P Is The Speed of Light Constant? . Usenet Physics FAQ . University of California, Riverside (1997). Проверено 26 ноября 2009. Архивировано 17 ноября 2009 года.

Доктор технических наук А. ГОЛУБЕВ.

В середине прошлого года в журналах появилось сенсационное сообщение. Группа американских исследователей обнаружила, что очень короткий лазерный импульс движется в особым образом подобранной среде в сотни раз быстрее, чем в вакууме. Это явление казалось совершенно невероятным (скорость света в среде всегда меньше, чем в вакууме) и даже породило сомнения в справедливости специальной теории относительности. Между тем сверхсветовой физический объект - лазерный импульс в усиливающей среде - был впервые обнаружен не в 2000 году, а на 35 лет раньше, в 1965 году, и возможность сверхсветового движения широко обсуждалась до начала 70-х годов. Сегодня дискуссия вокруг этого странного явления вспыхнула с новой силой.

Примеры "сверхсветового" движения.

В начале 60-х годов короткие световые импульсы большой мощности стали получать, пропуская через квантовый усилитель (среду с инверсной заселенностью) лазерную вспышку.

В усиливающей среде начальная область светового импульса вызывает вынужденное излучение атомов среды усилителя, а конечная его область - поглощение ими энергии. В результате наблюдателю будет казаться, что импульс движется быстрее света.

Эксперимент Лиджуна Вонга.

Луч света, проходящий сквозь призму из прозрачного материала (например, стекла), преломляется, то есть испытывает дисперсию.

Световой импульс представляет собой набор колебаний разной частоты.

Наверное, всем - даже людям, далеким от физики, - известно, что предельно возможной скоростью движения материальных объектов или распространения любых сигналов является скорость света в вакууме. Она обозначается буквой с и составляет почти 300 тысяч километров в секунду; точная величина с = 299 792 458 м/с. Скорость света в вакууме - одна из фундаментальных физических констант. Невозможность достижения скоростей, превышающих с , вытекает из специальной теории относительности (СТО) Эйнштейна. Если бы удалось доказать, что возможна передача сигналов со сверхсветовой скоростью, теория относительности пала бы. Пока что этого не случилось, несмотря на многочисленные попытки опровергнуть запрет на существование скоростей, больших с . Однако в экспериментальных исследованиях последнего времени обнаружились некоторые весьма интересные явления, свидетельствующие о том, что при специально созданных условиях можно наблюдать сверхсветовые скорости и при этом принципы теории относительности не нарушаются.

Для начала напомним основные аспекты, относящиеся к проблеме скорости света. Прежде всего: почему нельзя (при обычных условиях) превысить световой предел? Потому, что тогда нарушается фундаментальный закон нашего мира - закон причинности, в соответствии с которым следствие не может опережать причину. Никто никогда не наблюдал, чтобы, например, сначала замертво упал медведь, а потом выстрелил охотник. При скоростях же, превышающих с , последовательность событий становится обратной, лента времени отматывается назад. В этом легко убедиться из следующего простого рассуждения.

Предположим, что мы находимся на неком космическом чудо-корабле, движущемся быстрее света. Тогда мы постепенно догоняли бы свет, испущенный источником во все более и более ранние моменты времени. Сначала мы догнали бы фотоны, испущенные, скажем, вчера, затем - испущенные позавчера, потом - неделю, месяц, год назад и так далее. Если бы источником света было зеркало, отражающее жизнь, то мы сначала увидели бы события вчерашнего дня, затем позавчерашнего и так далее. Мы могли бы увидеть, скажем, старика, который постепенно превращается в человека средних лет, затем в молодого, в юношу, в ребенка... То есть время повернуло бы вспять, мы двигались бы из настоящего в прошлое. Причины и следствия при этом поменялись бы местами.

Хотя в этом рассуждении полностью игнорируются технические детали процесса наблюдения за светом, с принципиальной точки зрения оно наглядно демонстрирует, что движение со сверхсветовой скоростью приводит к невозможной в нашем мире ситуации. Однако природа поставила еще более жесткие условия: недостижимо движение не только со сверхсветовой скоростью, но и со скоростью, равной скорости света, - к ней можно только приближаться. Из теории относительности следует, что при увеличении скорости движения возникают три обстоятельства: возрастает масса движущегося объекта, уменьшается его размер в направлении движения и замедляется течение времени на этом объекте (с точки зрения внешнего "покоящегося" наблюдателя). При обычных скоростях эти изменения ничтожно малы, но по мере приближения к скорости света они становятся все ощутимее, а в пределе - при скорости, равной с , - масса становится бесконечно большой, объект полностью теряет размер в направлении движения и время на нем останавливается. Поэтому никакое материальное тело не может достичь скорости света. Такой скоростью обладает только сам свет! (А также "всепроникающая" частица - нейтрино, которая, как и фотон, не может двигаться со скоростью, меньшей с. )

Теперь о скорости передачи сигнала. Здесь уместно воспользоваться представлением света в виде электромагнитных волн. Что такое сигнал? Это некая информация, подлежащая передаче. Идеальная электромагнитная волна - это бесконечная синусоида строго одной частоты, и она не может нести никакой информации, ибо каждый период такой синусоиды в точности повторяет предыдущий. Cкорость перемещения фазы cинусоидальной волны - так называемая фазовая скорость - может в среде при определенных условиях превышать скорость света в вакууме. Здесь ограничения отсутствуют, так как фазовая скорость не является скоростью сигнала - его еще нет. Чтобы создать сигнал, надо сделать какую-то "отметку" на волне. Такой отметкой может быть, например, изменение любого из параметров волны - амплитуды, частоты или начальной фазы. Но как только отметка сделана, волна теряет синусоидальность. Она становится модулированной, состоящей из набора простых синусоидальных волн с различными амплитудами, частотами и начальными фазами - группы волн. Скорость перемещения отметки в модулированной волне и является скоростью сигнала. При распространении в среде эта скорость обычно совпадает с групповой скоростью, характеризующей распространение вышеупомянутой группы волн как целого (см. "Наука и жизнь" № 2, 2000 г.). При обычных условиях групповая скорость, а следовательно, и скорость сигнала меньше скорости света в вакууме. Здесь не случайно употреблено выражение "при обычных условиях", ибо в некоторых случаях и групповая скорость может превышать с или вообще терять смысл, но тогда она не относится к распространению сигнала. В СТО устанавливается, что невозможна передача сигнала со скоростью, большей с .

Почему это так? Потому, что препятствием для передачи любого сигнала со скоростью больше с служит все тот же закон причинности. Представим себе такую ситуацию. В некоторой точке А световая вспышка (событие 1) включает устройство, посылающее некий радиосигнал, а в удаленной точке В под действием этого радиосигнала происходит взрыв (событие 2). Понятно, что событие 1 (вспышка) - причина, а событие 2 (взрыв) - следствие, наступающее позже причины. Но если бы радиосигнал распространялся со сверхсветовой скоростью, наблюдатель вблизи точки В увидел бы сначала взрыв, а уже потом - дошедшую до него со скоростью с световую вспышку, причину взрыва. Другими словами, для этого наблюдателя событие 2 совершилось бы раньше, чем событие 1, то есть следствие опередило бы причину.

Уместно подчеркнуть, что "сверхсветовой запрет" теории относительности накладывается только на движение материальных тел и передачу сигналов. Во многих ситуациях возможно движение с любой скоростью, но это будет движение не материальных объектов и не сигналов. Например, представим себе две лежащие в одной плоскости достаточно длинные линейки, одна из которых расположена горизонтально, а другая пересекает ее под малым углом. Если первую линейку двигать вниз (в направлении, указанном стрелкой) с большой скоростью, точку пересечения линеек можно заставить бежать сколь угодно быстро, но эта точка - не материальное тело. Другой пример: если взять фонарик (или, скажем, лазер, дающий узкий луч) и быстро описать им в воздухе дугу, то линейная скорость светового зайчика будет увеличиваться с расстоянием и на достаточно большом удалении превысит с. Световое пятно переместится между точками А и В со сверхсветовой скоростью, но это не будет передачей сигнала из А в В, так как такой световой зайчик не несет никакой информации о точке А.

Казалось бы, вопрос о сверхсветовых скоростях решен. Но в 60-х годах двадцатого столетия физиками-теоретиками была выдвинута гипотеза существования сверхсветовых частиц, названных тахионами. Это очень странные частицы: теоретически они возможны, но во избежание противоречий с теорией относительности им пришлось приписать мнимую массу покоя. Физически мнимая масса не существует, это чисто математическая абстракция. Однако это не вызвало особой тревоги, поскольку тахионы не могут находиться в покое - они существуют (если существуют!) только при скоростях, превышающих скорость света в вакууме, а в этом случае масса тахиона оказывается вещественной. Здесь есть некоторая аналогия с фотонами: у фотона масса покоя равна нулю, но это просто означает, что фотон не может находиться в покое - свет нельзя остановить.

Наиболее сложным оказалось, как и следовало ожидать, примирить тахионную гипотезу с законом причинности. Попытки, предпринимавшиеся в этом направлении, хотя и были достаточно остроумными, не привели к явному успеху. Экспериментально зарегистриро вать тахионы также никому не удалось. В итоге интерес к тахионам как к сверхсветовым элементарным частицам постепенно сошел на нет.

Однако в 60-х же годах было экспериментально обнаружено явление, поначалу приведшее физиков в замешательство. Об этом подробно рассказано в статье А. Н. Ораевского "Сверхсветовые волны в усиливающих средах" (УФН № 12, 1998 г.). Здесь мы кратко приведем суть дела, отсылая читателя, интересующегося подробностями, к указанной статье.

Вскоре после открытия лазеров - в начале 60-х годов - возникла проблема получения коротких (длительностью порядка 1 нс = 10 -9 с) импульсов света большой мощности. Для этого короткий лазерный импульс пропускался через оптический квантовый усилитель. Импульс расщеплялся светодели тельным зеркалом на две части. Одна из них, более мощная, направлялась в усилитель, а другая распространялась в воздухе и служила опорным импульсом, с которым можно было сравнивать импульс, прошедший через усилитель. Оба импульса подавались на фотоприемники, а их выходные сигналы могли визуально наблюдаться на экране осциллографа. Ожидалось, что световой импульс, проходящий через усилитель, испытает в нем некоторую задержку по сравнению с опорным импульсом, то есть скорость распространения света в усилителе будет меньше, чем в воздухе. Каково же было изумление исследователей, когда они обнаружили, что импульс распространялся через усилитель со скоростью не только большей, чем в воздухе, но и превышающей скорость света в вакууме в несколько раз!

Оправившись от первого шока, физики стали искать причину столь неожиданного результата. Ни у кого не возникло даже малейшего сомнения в принципах специальной теории относительности, и именно это помогло найти правильное объяснение: если принципы СТО сохраняются, то ответ следует искать в свойствах усиливающей среды.

Не вдаваясь здесь в детали, укажем лишь, что подробный анализ механизма действия усиливающей среды полностью прояснил ситуацию. Дело заключалось в изменении концентрации фотонов при распространении импульса - изменении, обусловленном изменением коэффициента усиления среды вплоть до отрицательного значения при прохождении задней части импульса, когда среда уже поглощает энергию, ибо ее собственный запас уже израсходован вследствие передачи ее световому импульсу. Поглощение вызывает не усиление, а ослабление импульса, и, таким образом, импульс оказывается усиленным в передней и ослабленным в задней его части. Представим себе, что мы наблюдаем за импульсом при помощи прибора, движущегося со скоростью света в среде усилителя. Если бы среда была прозрачной, мы видели бы застывший в неподвижности импульс. В среде же, в которой происходит упомянутый выше процесс, усиление переднего и ослабление заднего фронта импульса будет представляться наблюдателю так, что среда как бы подвинула импульс вперед. Но раз прибор (наблюдатель) движется со скоростью света, а импульс обгоняет его, то скорость импульса превышает скорость света! Именно этот эффект и был зарегистрирован экспериментаторами. И здесь действительно нет противоречия с теорией относительности: просто процесс усиления таков, что концентрация фотонов, вышедших раньше, оказывается больше, чем вышедших позже. Со сверхсветовой скоростью перемещаются не фотоны, а огибающая импульса, в частности его максимум, который и наблюдается на осциллографе.

Таким образом, в то время как в обычных средах всегда происходит ослабление света и уменьшение его скорости, определяемое показателем преломления, в активных лазерных средах наблюдается не только усиление света, но и распространение импульса со сверхсветовой скоростью.

Некоторые физики пытались экспериментально доказать наличие сверхсветового движения при туннельном эффекте - одном из наиболее удивительных явлений в квантовой механике. Этот эффект состоит в том, что микрочастица (точнее говоря, микрообъект, в разных условиях проявляющий как свойства частицы, так и свойства волны) способна проникать через так называемый потенциальный барьер - явление, совершенно невозможное в классической механике (в которой аналогом была бы такая ситуация: брошенный в стену мяч оказался бы по другую сторону стены или же волнообразное движение, приданное привязанной к стене веревке, передавалось бы веревке, привязанной к стене с другой стороны). Сущность туннельного эффекта в квантовой механике состоит в следующем. Если микрообъект, обладающий определенной энергией, встречает на своем пути область с потенциальной энергией, превышающей энергию микрообъекта, эта область является для него барьером, высота которого определяется разностью энергий. Но микрообъект "просачивается" через барьер! Такую возможность дает ему известное соотношение неопределенностей Гейзенбер га, записанное для энергии и времени взаимодействия. Если взаимодействие микрообъекта с барьером происходит в течение достаточно определенного времени, то энергия микрообъекта будет, наоборот, характеризоваться неопределенностью, и если эта неопределен ность будет порядка высоты барьера, то последний перестает быть для микрообъекта непреодолимым препятствием. Вот скорость проникновения через потенциальный барьер и стала предметом исследований ряда физиков, полагающих, что она может превышать с .

В июне 1998 года в КЈльне состоялся международный симпозиум по проблемам сверхсветовых движений, где обсуждались результаты, полученные в четырех лабораториях - в Беркли, Вене, КЈльне и во Флоренции.

И, наконец, в 2000 году появились сообщения о двух новых экспериментах, в которых проявились эффекты сверхсветового распространения. Один из них выполнил Лиджун Вонг с сотрудниками в исследовательском институте в Принстоне (США). Его результат состоит в том, что световой импульс, входящий в камеру, наполненную парами цезия, увеличивает свою скорость в 300 раз. Получалось, что главная часть импульса выходит из дальней стенки камеры даже раньше, чем импульс входит в камеру через переднюю стенку. Такая ситуация противоречит не только здравому смыслу, но, в сущности, и теории относитель ности.

Сообщение Л. Вонга вызвало интенсивное обсуждение в кругу физиков, большинство которых не склонны видеть в полученных результатах нарушение принципов относительно сти. Задача состоит в том, полагают они, чтобы правильно объяснить этот эксперимент.

В эксперименте Л.Вонга световой импульс, входящий в камеру с парами цезия, имел длительность около 3 мкс. Атомы цезия могут находиться в шестнадцати возможных квантовомеханических состояниях, называемых "сверхтонкие магнитные подуровни основного состояния". При помощи оптической лазерной накачки почти все атомы приводились только в одно из этих шестнадцати состояний, соответствующее почти абсолютному нулю температуры по шкале Кельвина (-273,15 о C). Длина цезиевой камеры составляла 6 сантиметров. В вакууме свет проходит 6 сантиметров за 0,2 нс. Через камеру же с цезием, как показали выполненные измерения, световой импульс проходил за время на 62 нс меньшее, чем в вакууме. Другими словами, время прохождения импульса через цезиевую среду имеет знак "минус"! Действительно, если из 0,2 нс вычесть 62 нс, получим "отрицательное" время. Эта "отрицательная задержка" в среде - непостижимый временной скачок - равен времени, в течение которого импульс совершил бы 310 проходов через камеру в вакууме. Следствием этого "временного переворота" явилось то, что выходящий из камеры импульс успел удалиться от нее на 19 метров, прежде чем приходящий импульс достиг ближней стенки камеры. Как же можно объяснить такую невероятную ситуацию (если, конечно, не сомневаться в чистоте эксперимента)?

Судя по развернувшейся дискуссии, точное объяснение еще не найдено, но несомненно, что здесь играют роль необычные дисперсионные свойства среды: пары цезия, состоящие из возбужденных лазерным светом атомов, представляют собой среду с аномальной дисперсией. Напомним кратко, что это такое.

Дисперсией вещества называется зависимость фазового (обычного) показателя преломления n от длины волны света l. При нормальной дисперсии показатель преломления увеличивается с уменьшением длины волны, и это имеет место в стекле, воде, воздухе и всех других прозрачных для света веществах. В веществах же, сильно поглощающих свет, ход показателя преломления с изменением длины волны меняется на обратный и становится гораздо круче: при уменьшении l (увеличении частоты w) показатель преломления резко уменьшается и в некоторой области длин волн становится меньше единицы (фазовая скорость V ф > с ). Это и есть аномальная дисперсия, при которой картина распространения света в веществе меняется радикальным образом. Групповая скорость V гр становится больше фазовой скорости волн и может превысить скорость света в вакууме (а также стать отрицательной). Л. Вонг указывает на это обстоятельство как на причину, лежащую в основе возможности объяснения результатов его эксперимента. Следует, однако, заметить, что условие V гр > с является чисто формальным, так как понятие групповой скорости введено для случая малой (нормальной) дисперсии, для прозрачных сред, когда группа волн при распространении почти не меняет своей формы. В областях же аномальной дисперсии световой импульс быстро деформируется и понятие групповой скорости теряет смысл; в этом случае вводятся понятия скорости сигнала и скорости распространения энергии, которые в прозрачных средах совпадают с групповой скоростью, а в средах с поглощением остаются меньше скорости света в вакууме. Но вот что интересно в эксперименте Вонга: световой импульс, пройдя через среду с аномальной дисперсией, не деформируется - он в точности сохраняет свою форму! А это соответствует допущению о распространении импульса с групповой скоростью. Но если так, то получается, что в среде отсутствует поглощение, хотя аномальная дисперсия среды обусловлена именно поглощением! Сам Вонг, признавая, что многое еще остается неясным, полагает, что происходящее в его экспериментальной установке можно в первом приближении наглядно объяснить следующим образом.

Световой импульс состоит из множества составляющих с различными длинами волн (частотами). На рисунке показаны три из этих составляющих (волны 1-3). В некоторой точке все три волны находятся в фазе (их максимумы совпадают); здесь они, складываясь, усиливают друг друга и образуют импульс. По мере дальнейшего распространения в пространстве волны расфазируются и тем самым "гасят" друг друга.

В области аномальной дисперсии (внутри цезиевой ячейки) волна, которая была короче (волна 1), становится длиннее. И наоборот, волна, бывшая самой длинной из трех (волна 3), становится самой короткой.

Следовательно, соответственно меняются и фазы волн. Когда волны прошли через цезиевую ячейку, их волновые фронты восстанавливаются. Претерпев необычную фазовую модуляцию в веществе с аномальной дисперсией, три рассматриваемые волны вновь оказываются в фазе в некоторой точке. Здесь они снова складываются и образуют импульс точно такой же формы, как и входящий в цезиевую среду.

Обычно в воздухе и фактически в любой прозрачной среде с нормальной дисперсией световой импульс не может точно сохранять свою форму при распространении на удаленное расстояние, то есть все его составляющие не могут быть сфазированы в какой-либо удаленной точке вдоль пути распространения. И в обычных условиях световой импульс в такой удаленной точке появляется спустя некоторое время. Однако вследствие аномальных свойств использованной в эксперименте среды импульс в удаленной точке оказался сфазирован так же, как и при входе в эту среду. Таким образом, световой импульс ведет себя так, как если бы он имел отрицательную временную задержку на пути до удаленной точки, то есть пришел бы в нее не позже, а раньше, чем прошел среду!

Большая часть физиков склонна связывать этот результат с возникновением низкоинтенсивного предвестника в диспергирующей среде камеры. Дело в том, что при спектральном разложении импульса в спектре присутствуют составляющие сколь угодно высоких частот с ничтожно малой амплитудой, так называемый предвестник, идущий впереди "главной части" импульса. Характер установления и форма предвестника зависят от закона дисперсии в среде. Имея это в виду, последовательность событий в эксперименте Вонга предлагается интерпретировать следующим образом. Приходящая волна, "простирая" предвестник впереди себя, приближается к камере. Прежде чем пик приходящей волны попадет на ближнюю стенку камеры, предвестник инициирует возникновение импульса в камере, который доходит до дальней стенки и отражается от нее, образуя "обратную волну". Эта волна, распространяясь в 300 раз быстрее с , достигает ближней стенки и встречается с приходящей волной. Пики одной волны встречаются со впадинами другой, так что они уничтожают друг друга и в результате ничего не остается. Получается, что приходящая волна "возвращает долг" атомам цезия, которые "одалживали" ей энергию на другом конце камеры. Тот, кто наблюдал бы только начало и конец эксперимента, увидел бы лишь импульс света, который "прыгнул" вперед во времени, двигаясь быстрее с.

Л. Вонг считает, что его эксперимент не согласуется с теорией относительности. Утверждение о недостижимости сверхсветовой скорости, полагает он, применимо только к объектам, обладающим массой покоя. Свет может быть представлен либо в виде волн, к которым вообще неприменимо понятие массы, либо в виде фотонов с массой покоя, как известно, равной нулю. Поэтому скорость света в вакууме, считает Вонг, не предел. Тем не менее Вонг признает, что обнаруженный им эффект не дает возможности передавать информацию со скоростью больше с .

"Информация здесь уже заключена в переднем крае импульса, - говорит П. Милонни, физик из Лос-Аламосской национальной лаборатории США. - И может создаться впечатление о сверхсветовой посылке информации, даже когда вы ее не посылаете".

Большинство физиков считают, что новая работа не наносит сокрушительного удара по фундаментальным принципам. Но не все физики полагают, что проблема улажена. Профессор А. Ранфагни из итальянской исследовательской группы, осуществившей еще один интересный эксперимент 2000 года, считает, что вопрос еще остается открытым. Этот эксперимент, проведенный Даниэлом Мугнаи, Анедио Ранфагни и Рокко Руггери, обнаружил, что радиоволны сантиметрового диапазона в обычном воздухе распространяются со скоростью, превышающей с на 25%.

Резюмируя, можно сказать следующее. Работы последних лет показывают, что при определенных условиях сверхсветовая скорость действительно может иметь место. Но что именно движется со сверхсветовой скоростью? Теория относительности, как уже упоминалось, запрещает такую скорость для материальных тел и для сигналов, несущих информацию. Тем не менее некоторые исследователи весьма настойчиво пытаются продемонстри ровать преодоление светового барьера именно для сигналов. Причина этого кроется в том, что в специальной теории относительности нет строгого математического обоснования (базирующегося, скажем, на уравнениях Максвелла для электромагнитного поля) невозможности передачи сигналов со скоростью больше с . Такая невозможность в СТО устанавливается, можно сказать, чисто арифметически, исходя из эйнштейновской формулы сложения скоростей, но фундаментальным образом это подтверждается принципом причинности. Сам Эйнштейн, рассматривая вопрос о сверхсветовой передаче сигналов, писал, что в этом случае "...мы вынуждены считать возможным механизм передачи сигнала, при использовании которого достигаемое действие предшествует причине. Но, хотя этот результат с чисто логической точки зрения и не содержит в себе, по-моему, никаких противоречий, он все же настолько противоречит характеру всего нашего опыта, что невозможность предположения V > с представляется в достаточной степени доказанной". Принцип причинности - вот тот краеугольный камень, который лежит в основе невозможности сверхсветовой передачи сигналов. И об этот камень, по-видимому, будут спотыкаться все без исключения поиски сверхсветовых сигналов, как бы экспериментаторам не хотелось такие сигналы обнаружить, ибо такова природа нашего мира.

В заключение следует подчеркнуть, что все вышеизложенное относится именно к нашему миру, к нашей Вселенной. Такая оговорка сделана потому, что в последнее время в астрофизике и космологии появляются новые гипотезы, допускающие существование множества скрытых от нас Вселенных, соединенных топологическими туннелями -перемычками. Такой точки зрения придерживается, например, известный астрофизик Н. С. Кардашев. Для внешнего наблюдателя входы в эти туннели обозначаются аномальными полями тяготения, подобно черным дырам. Перемещения в таких туннелях, как предполагают авторы гипотез, позволят обойти ограничение скорости движения, накладыва емое в обычном пространстве скоростью света, и, следовательно, реализовать идею о создании машины времени... Не исключено, что в подобных Вселенных действительно могут происходить необычные для нас вещи. И хотя пока что такие гипотезы слишком уж напоминают сюжеты из научной фантастики, вряд ли следует категорически отвергать принципиальную возможность многоэлементной модели устройства материального мира. Другое дело, что все эти другие Вселенные, скорее всего, останутся чисто математическими построениями физиков-теоретиков, живущих в нашей Вселенной и силой своей мысли пытающихся нащупать закрытые для нас миры...

См. в номере на ту же тему