Типы кровеносных сосудов. Кровеносные сосуды человека. Строение и классификация

Кровеносные сосуды - эластичные трубки, по которым кровь транспортируется ко всем органам и тканям, а затем снова собирается к сердцу. Изучением кровеносных сосудов, наряду с лимфатическими, занимается раздел медицины - ангиология. Кровеносные сосуды образуют: а) макроциркуляторне русло - это артерии и вены, по которым кровь движется от сердца к органам и возвращается к сердцу; б) микроциркуяяторне русло - включает в себя капилляры, артериолы и венулы, расположенные в органах, которые обеспечивают обмен веществ между кровью и тканями.

Артерии - кровеносные сосуды, по которым кровь движется от сердца к органам и тканям. Стенки артерий имеют три слоя:

внешний слой построен из рыхлой соединительной ткани, в нем проходят нервы, регулирующие расширение и сужение сосудов;

средний слой состоит из гладкомышечной оболочки и эластичных волокон (благодаря сокращению или расслаблению мышц может меняться просвет сосудов, регулируя течение крови, а эластичные волокна придают сосудам упругости)

внутренний слой - образован особой соединительной тканью, клетки которой имеют очень гладкие оболочки, не препятствуют движению крови.

В зависимости от диаметра артерий, в них меняется и строение стенки, поэтому выделяют три типа артерий: эластичного (например, аорта, легочный ствол), мышечного (артерии органов) и смешанного, или мышечно-эластичного (например, сонная артерия) типа.

Капилляры - мельчайшие кровеносные сосуды, которые соединяют между собой артерии и вены и обеспечивают обмен веществ между кровью и тканевой жидкостью. Их диаметр - около 1 мкм, общая поверхность всех капилляров тела составляет 6300 м2. Стенки состоят из одного слоя плоских эпителиальных клеток - эндотелия. Эндотелий - это внутренний слой плоских, вытянутых в длину клеток с неровными волнистыми краями, которым выстланы капилляры, а также все другие сосуды и сердце. Эндотелиоциты производят ряд физиологически активных веществ. Среди них - оксид азота, вызывает расслабление гладких миоцитов, вызывая этим расширение сосудов. В органах капилляры обеспечивают микроциркуляцию крови и образуют сетку, но могут формировать и петли (например, в сосочках кожи), а также клубочки (например, в нефронах почек). Различные органы имеют разный уровень развития капиллярной сетки. Например, в коже на 1 мм2 есть 40 капилляров, а в мышцах - около 1000. Значительное развитие капиллярной сетки имеет серое вещество органов ЦНС, эндокринные железы, скелетные мышцы, сердце, жировая ткань.

Вены - кровеносные сосуды, по которым кровь движется от органов и тканей к сердцу. Они имеют такое же строение стенок, как и артерии, но тонкие и менее эластичные. В средних и некоторых крупных венах есть полулунные клапаны, обеспечивающие течение крови только в одном направлении. Вены являются мышечные (полые) и безмьязови (сетчатки глаза, костей). Движения крови по венам к сердцу способствуют всасывающая действие сердца, растяжение полых вен в грудной полости при вдыхании воздуха, наличие клапанного аппарата.

Сравнительная характеристика сосудов

признаки

артерии

капилляры

вены

строение

Толстые стенки из 3 слоев. отсутствие клапанов

Стенки из одного слоя плоских клеток

Тонкие стенки из 3 слоев Наличие клапанов

Движение крови от сердца

Обмен веществ между кровью и тканями

Движение крови к сердцу

скорость крови

Около 0,5 м / с

Около 0,5 мм / с

Около 0,2 м / с

давление крови

До 120 мм рт. ст.

До 20 мм рт. ст.

От 3-8 мм рт. ст. и ниже

Строение кровеносных сосудов

Кровеносные сосуды получают свое название в зависимости от органа, который они кровоснабжают (почечная артерия, селезеночная вена), места их отхождения от более крупного сосуда (верхняя брыжеечная артерия, нижняя брыжеечная артерия), кости, к которой они прилежат (локтевая артерия), направления (медиальная артерия, окружающая бедро), глубины залегания (поверхностная или глубокая артерия), Многие мелкие артерии называются ветвями, а вены - притоками.

Артерии . В зависимости от области ветвления артерии делятся на париетальные (пристеночные), кровоснабжающие стенки тела, и висцеральные (внутренностные), кровоснабжающие внутренние органы. До вступления артерии в орган она называется органной, войдя в орган - внутриорганной. Последняя разветвляется в пределах органа и снабжает его отдельные структурные элементы.

Каждая артерия распадается на более мелкие сосуды. При магистральном типе ветвления от основного ствола - магистральной артерии, диаметр которой постепенно уменьшается, отходят боковые ветви. При древовидном типе ветвления артерия сразу же после своего отхождения разделяется на две или несколько конечных ветвей, напоминая при этом крону дерева.

Стенка артерии состоит из трех оболочек: внутренней, средней и наружной. Внутренняя оболочка образована эндотелием, подэндотелиальным слоем и внутренней эластической мембраной. Эндотелиоциты выстилают просвет сосуда. Они вытянуты вдоль его продольной оси и имеют малоизвитые границы, Подэндотелиальный слой состоит из тонких эластических и коллагеновых волокон и малодифференцированных соединительнотканных клеток. Кнаружи расположена внутренняя эластическая мембрана. Средняя оболочка артерии состоит из расположенных спирально миоцитов, между которыми находится небольшое количество коллагеновых и эластических волокон, и наружной эластической мембраны, образованной переплетающимися эластическими волокнами. Наружная оболочка состоит из рыхлой волокнистой неоформленной соединительной ткани, содержащей эластические и коллагеновые волокна.

В зависимости от развития различных слоев стенки артерии подразделяются на сосуды мышечного, смешанного (мышечноэластнческого) и эластического типов. В стенках артерий мышечного типа, имеющих небольшой диаметр, хорошо развита средняя оболочка. Миоциты средней оболочки стенок артерий мышечного типа своими сокращениями регулируют приток крови к органам и тканям. По мере уменьшения диаметра артерий все оболочки стенок истончаются, уменьшается толщина подэндотелиального слоя и внутренней эластической мембраны.

Рис, 102. Схема строения стенки артерии (А) и вены (Б) мышечного типа среднего калибра /-внутренняя оболочка: 1-эндотелий. 2- базальная мембрана, 3-подэндотелиальный слой, 4- внутренняя эластическая мембрана; // - средняя оболочка и в ней: 5- миоциты, б-эластические волокна, 7-коллагеновые волокна; /// - наружная оболочка и в ней: 8- наружная эластическая мембрана, 9-волокнистая (рыхлая) соединительная ткань, 10- кровеносные сосуды

Постепенно убывает количество миоцитов и эластических волокон в средней оболочке. В наружной оболочке уменьшается количество эластических волокон, исчезает наружная эластическая мембрана.

Наиболее тонкие артерии мышечного типа - артериолы имеют диаметр менее 10 мкм и переходят в капилляры. В стенках артериол отсутствует внутренняя эластическая мембрана. Средняя оболочка образована отдельными миоцитами, имеющими спиральное направление, между которыми находится небольшое количество эластических волокон. Наружная эластическая мембрана выражена лишь в стенках наиболее крупных артериол и отсутствует у мелких. Наружная оболочка содержит эластические и коллагеновые волокна. Артериолы регулируют приток крови в систему капилляров. К артериям смешанного типа относятся такие артерии крупного калибра, как сонная и подключичная. В средней оболочке их стенки примерно равное количество эластических волокон и миоцитов. Внутренняя эластическая мембрана толстая, прочная. В наружной оболочке стенок артерий смешанного типа можно выделить два слоя: внутренний, содержащий отдельные пучки миоцитов, и наружный, состоящий преимущественно из продольно и косо расположенных пучков коллагеновых и эластических волокон. К артериям эластического типа оголятся аорта и легочный ствол, в которые кровь поступает под большим давлением с большой скоростью из сердца. ; стенках этих сосудов внутренняя оболочка толще, внутренняя эластическая мембрана представлена густым сплетением тонких эластических волокон. Средняя оболочка образована эластическими мембранами, расположенными концентрически, между которыми залегают миоциты. Наружная оболочка тонкая. У детей диаметр артерий относительно больше, чем у взрослых. У новорожденного артерии преимущественно эластического типа, в их стенках много эластической ткани. Артерии мышечного тлил еще не развиты.

Дистальная часть сердечно-сосудистой системы микроциркуляторное русло (рис, 103), обеспечивающее взаимодействие крови и тканей. Микроциркуляторное русло начинается самым мелким артериальным сосудом - артериолой и заканчивается венулой.

Стенка артерии содержит лишь один ряд миоцитов. От артериолы отходят прекапилляры, у начала которых находятся гладкомышечные прекапиллярные сфинктеры, регулирующие кровоток. В стенках прекапилляров в отличие от капилляров поверх эндотелии лежат единичные миоциты. От них начинаются истинные капилляры. Истинные капилляры вливаются в посткапилляры (посткапиллярные венулы). Посткапилляры образуются из слияния двух или нескольких капилляров. Они имеют тонкую адвентициальную оболочку, стенки их растяжимы и обладают высокой проницаемостью. По мере слияния посткапилляров образуются венулы. Их калибр широко варьирует и в обычных условиях равен 25-50 мкм. Венулы вливаются в вены. В пределах микроциркуляторного русла встречаются сосуды прямого перехода крови из артериолы в венулу-артериоло-венулярные анастомозы, в стенках которых имеются миоциты, регулирующие сброс крови. К микроциркуляторному руслу относятся также и лимфатические капилляры.

Обычно к капиллярной сети подходит сосуд артериального типа (артериола), а выходит из нее венула. В некоторых органах (почка, печень) имеется отступление от этого правила. Так, к клубочку почечного тельца подходит артериола (приносящий сосуд). Выходит из клубочка также артериола (выносящий сосуд). 8 печени капиллярная сеть располагается между приносящей (междольковой) и выносящей (центральной) венами. Капиллярную сеть, вставленную между двумя однотипными сосудами (артериями, венами), называют чудесной сетью.

Капилляры . Кровеносные капилляры (гемокапилляры) имеют стенки, образованные одним слоем уплощенных эндотелиальных клеток - эндотелиоцитов, сплошной или прерывистой базальной мембраной и редкими перикапиллярными клетками - перицитами, или клетками Руже.

Эндотелиоциты лежат на базальной мембране (базальном слое), которая со всех сторон окружает кровеносный капилляр. Базальный слой состоит из фибрилл, сплетенных между собой, и аморфного вещества. Кнаружи от базального слоя лежат клетки Руже, представляющие собой удлиненные многоотростчатые клетки, расположенные вдоль длинной оси капилляров. Следует подчеркнуть, что каждый эндотелиоцит контактирует с отростками перицитов. В свою очередь, к каждому перициту подходит окончание аксона симпатического нейрона, которое как бы ннвагннируется в его плазмалемму. Перицит передает эндотелиоциту импульс, в результате чего эндотелиальная клетка набухает или теряет жидкость. Это и приводит к периодическим изменениям просвета капилляра.

Цитоплазма эндотелиоцитов может иметь поры, или фенестры (пористый эндотелиоцит). Неклеточный компонент - базальный слой может быть сплошным, отсутствовать или быть пористым. В зависимости от этого различают три типа капилляров:

1. Капилляры с непрерывным эндотелием и базальным слоем. Такие капилляры располагаются в коже; мышцах исчерченных (поперечнополосатых), включая миокард, и неисчерченных (гладких); коре большого мозга.

2. Фенестрированные капилляры, у которых некоторые участки эндотелиоцитов истончены.

3. Синусоидные капилляры имеют большой просвет, до 10 мкм. В их эндотелиоцитах находятся моры, а базальная мембрана частично отсутствует (прерывистая). Такие капилляры расположены в печени, селезенке, костном мозге.

Посткапиллярные венулы диаметром 100-300 мкм, являющиеся конечным звеном микроциркуляторного русла, впадают в собирательные венулы (диаметром 100- 300 мкм). которые, сливаясь между собой, укрупняются, Строение посткапиллярных венул на значительном протяжении сходно со строением стенок капилляров, у них лишь шире просвет и большее количество перицитов. У собирательных венул появляется наружная оболочка, образованная коллагеновыми волокнами и фибробластами. В средней оболочке стенки более крупных венул расположено I -2 слоя гладких мышечных клеток, количество их слоев увеличивается в собирательных пенах,

Вены . Стенка вены также состоит из трех оболочек. Различают два тина вен: безмышечного и мышечного типов, У безмышечных вен снаружи к эндотелию прилежит базальная мембрана, за которой располагается тонкий слон рыхлой волокнистой соединительной ткани. К венам безмышечного типа относятся вены твердой и мягкой мозговых оболочек, сетчатки глаза, костей, селезенки и плаценты. Они плотно сращены со стенками органов и поэтому не спадаются.

Вены мышечного типа имеют хорошо выраженную мышечную оболочку, образованную циркулярно расположенными пучками миоцитов, разделенных прослойками волокнистой соединительной ткани. Наружная эластическая мембрана отсутствует. Наружная соединительнотканная оболочка развита хорошо. На внутренней оболочке большинства средних и некоторых крупных вен имеются клапаны (рис. 104). Верхняя полая вена, плечеголовные, общие я внугрение подвздошные, вены сердца, легких. надпочечников, головного мозга и их оболочек, паренхиматозных органов клапанов не имеют. Клапаны представляют собой тонкие складки внутренней оболочки, состоящие из волокнистой соединительной ткани, покрытые с обеих сторон эндотелиоцитами. Они пропускают кровь лишь по направлению к сердцу, препятствуют обратному току кропи в венах и предохраняют сердце от излишней затраты энергии на преодоление колебательных движений крови, постоянно возникающих в венах. Венозные синусы твердой мозговой оболочки, и которые оттекает кровь от головного мозга, имеют не спадающиеся стенки, обеспечивающие беспрепятственный ток крови из полости черепа во внечерепные вены (внутренние яремные).

Общее количество вен больше, чем артерий, а общая величина венозного русла превосходит артериальное. Скорость кровотока в венах меньше, чем в артериях, в венах туловища и нижних конечностей кровь течет против силы тяжести. Названия многих глубоких вен конечностей аналогичны названиям артерий, которые они попарно сопровождают,- вены-спутницы (локтевая артерия - локтевые вены, лучевая артерия - лучевые вены).

Большинство вен, расположенных в полостях тела, одиночные. Непарными глубокими венами являются внутренняя яремная, подключичная, подмышечная, подвздошные (общая, наружная и внутренняя), бедренная и некоторые другие. Поверхностные вены соединяются с глубокими с помощью прободающих вен, которые выполняют роль анастомозов Соседние вены также связаны между собой многочисленными анастомозами, образующими в совокупности венозные сплетения, которые хорошо выражены на поверхности или в стенках некоторых внутренних органов (мочевого пузыря, прямой кишки).

Верхняя и нижняя полые вены большого круча кровообращения впадают и сердце. В систему нижней полой пены входит воротная вена с ее притоками. Окольный ток крови осуществляется также но коллатеральным венам, но которым показная кровь оттекает и обход основного пути. Притоки одной крупной (магистральной) вены соединяются между собой внутрисистемными венозными анастомозами. Венозные анастомозы встречаются чаще и развиты лучше, чем артериальные.

Малый, или легочный, круг кровообращения начинается в правом желудочке сердца, откуда выходит легочный ствол, который делится на правую и левую легочные артерии, а последние разветвляются в легких на артерии, переходящие в капилляры- В капиллярных сетях, оплетающих альвеолы, кровь отдает углекислоту и обогащается кислородом. Обогащенная кислородом артериальная кровь поступает из капилляров в вены, которые, слившись в четыре легочные вены {по две с каждой стороны), впадают в левое предсердие, где и заканчивается малый (легочный) круг кровообращения.

Большой, или телесный, круг кровообращения служит дли доставки всем органам и тканям тела питательных веществ и кислорода, Он начинается в левом, желудочке сердца, куда от левого предсердия поступает артериальная кровь. Из левого желудочка выходит аорта, от которой отходят артерии, идущие ко всем органам и тканям тела и разветвляющиеся в их толще вплоть до артериол и капилляров. Последние переходят а венулы и далее в вены. Через стенки капилляров осуществляется обмен веществ и газообмен между кровью и тканями тела. Протекающая в капиллярах артериальная кроль отлает питательные вещества и кислород и получает продукты обмена и углекислоту. Бены слипаются в два крупных ствола - верхнюю и нижнюю полые вены, которые впадают в правое предсердие сердца, где и заканчивается большой круг кровообращения. Дополнением к большому кругу является третий (сердечный) круг кровообращения, обслуживающий само сердце- Он начинается выходящими из аорты венечными артериями сердил и заканчивается венам» сердца. Последние слипаются в венечный синус, впадающий в правое предсердие, а остальные наиболее мелкие вены открываются непосредственно в полость правого предсердия и желудочка.

Ход артерий и кровоснабжение различных органов зависят от их строения, функции и развития и подчиняются ряду закономерностей. Крупные артерии располагаются соответственно скелету и нервной системе. Так, вдоль позвоночного столба лежит аорта. На конечностях кости соответствует одна магистральная артерия.

Артерии идут к соответствующим органам по наиболее короткому пути, т. е. приблизительно по прямой линии, соединяющей основной ствол с органом. Поэтому каждая артерия кровоснабжает близлежащие органы. Если во внутриутробном периоде орган перемещается, то артерия, удлиняясь, следует за ним к месту его окончательного расположения (например, диафрагма, яичко). Артерии располагаются на более коротких сгибательных поверхностях тела. Вокруг суставов образуются суставные артериальные сети. Защиту от повреждений, сдавлений выполняют кости скелета, различные борозды и каналы, образованные костями, мышами, фасциями.

Артерии входят в органы через ворота, расположенные на их согнутой медиальной или внутренней поверхности, обращенной к источнику кровоснабжения. При этом диаметр артерий и характер их ветвления зависят от размеров и функций органа.

Стенка кровеносного сосуда состоит из нескольких слоев: внутреннего (tunica intima), содержащего эндотелий, подэндотелиальный слой и внутреннюю эластическую мембрану; среднего (tunica media), образованного гладкомышечными клетками и эластическими волокнами; наружного (tunica externa), представленного рыхлой соединительной тканью, в которой находятся нервные сплетения и vasa vasorum. Стенка кровеносного сосуда получает питание за счет ветвей, отходящих от главного ствола этой же артерии или рядом лежащей другой артерии. Эти ветви проникают в стенку артерии или вены через наружную оболочку, образуя в ней сплетение артерий, поэтому они получили название «сосуды сосудов» (vasa vasorum).

Кровеносные сосуды, направляющиеся к сердцу, принято называть венами, а отходящие от сердца - артериями, независимо от состава крови, которая протекает по ним. Артерии и вены отличаются особенностями внешнего и внутреннего строения.
1. Различают следующие типы строения артерий: эластический, эластическо-мышечный и мышечно-эластический.

К артериям эластического типа относятся аорта, плечеголовной ствол, подключичная, общая и внутренняя сонная артерии, общая подвздошная артерия. В среднем слое стенки преобладают над коллагеновыми эластические волокна, лежащие в виде сложной сети, образующей мембраны. Внутренняя оболочка сосуда эластического типа более толстая, чем у артерии мышечно-эластического типа. Стенка сосудов эластического типа состоит из эндотелия, фибробластов, коллагеновых, эластических, аргирофильных и мышечных волокон. В наружной оболочке много коллагеновых соединительнотканных волокон.

Для артерий эластическо-мышечного и мышечно-эластического типов (верхние и нижние конечности, экстраорганные артерии) характерно наличие в их среднем слое эластических и мышечных волокон. Мышечные и эластические волокна переплетаются в виде спиралей по всей длине сосуда.

2. Мышечный тип строения имеют внутриорганные артерии, артериолы и венулы. Их средняя оболочка образована мышечными волокнами (рис. 362). На границе каждого слоя сосудистой стенки имеются эластические мембраны. Внутренняя оболочка в области разветвления артерий утолщается в виде подушечек, которые противостоят вихревым ударам потока крови. При сокращении мышечного слоя сосудов совершается регуляция кровотока, что ведет к нарастанию сопротивления и повышению кровяного давления. При этом возникают условия, когда кровь направляется в другое русло, где давление ниже вследствие расслабления сосудистой стенки, или поток крови сбрасывается по артериоловенулярным анастомозам в венозную систему. В организме постоянно происходит перераспределение крови, и в первую очередь она направляется к более нуждающимся органам. Например, при сокращении, т. е. работе, поперечнополосатых мышц кровоснабжение их увеличивается в 30 раз. Зато в других органах компенсаторно наступает замедление кровотока и уменьшение кровоснабжения.

362. Гистологический срез артерии эластическо-мышечного типа и вены.
1 - внутренний слой вены; 2 - средний слой вены; 3 - наружный слой вены; 4 - наружный (адвентициальный) слой артерии; 5 - средний слой артерии; 6 - внутренний слой артерии.


363. Клапаны в бедренной вене. Стрелка показывает направление тока крови (по Sthor).
1 - стенка вены; 2 - створка клапана; 3 - пазуха клапана.

3. Вены по строению отличаются от артерий, что зависит от низкого давления крови. Стенка вен (нижняя и верхняя полые вены, все экстраорганные вены) состоит из трех слоев (рис. 362). Внутренний слой хорошо развит я содержит, помимо эндотелия, мышечные и эластические волокна. Во многих венах встречаются клапаны (рис. 363), имеющие соединительнотканную створку и в основании клапана - валикообразное утолщение из мышечных волокон. Средний слой вен более толстый и состоит из спиральных мышечных, эластических и коллагеновых волокон. В венах отсутствует наружная эластическая мембрана. В местах слияния вен и дистальнее клапанов, выполняющих роль сфинктеров, мышечные пучки образуют циркулярные утолщения. Наружная оболочка состоит из рыхлой соединительной и жировой ткани, содержит более густую сеть околососудистых сосудов (vasa vasorum), чем артериальная стенка. Многие вены имеют паравенозное русло за счет хорошо развитого околососудистого сплетения (рис. 364).


364. Схематическое изображение сосудистого пучка, представляющего замкнутую систему, где пульсовая волна способствует движению венозной крови.

В стенке венул выявляются мышечные клетки, выполняющие роль сфинктеров, функционирующих под контролем гуморальных факторов (серотонин, катехоламин, гистамин и др.). Внутриорганные вены окружены соединительнотканным футляром, находящимся между стенкой вены и паренхимой органа. Часто в этой соединительнотканной прослойке располагаются сети лимфатических капилляров, например в печени, почках, яичке и других органах. В полостных органах (сердце, матка, мочевой пузырь, желудок и др.) гладкие мышцы их стенок вплетаются в стенку вены. Ненаполненные кровью вены спадаются из-за отсутствия в их стенке упругого эластического каркаса.

4. Кровеносные капилляры имеют диаметр 5-13 мкм, но встречаются органы и с широкими капиллярами (30-70 мкм), например в печени, передней доле гипофиза; еще более широкие капилляры в селезенке, клиторе и половом члене. Стенка капилляра тонка и состоит из слоя эндотелиальных клеток и базальной мембраны. С внешней стороны кровеносный капилляр окружен перицитами (клетки соединительной ткани). В стенке капилляра отсутствуют мышечные и нервные элементы, поэтому регуляция кровотока по капиллярам полностью находится под контролем мышечных сфинктеров артериол и венул (это их отличает от капилляров), а деятельность регулируется симпатической нервной системой и гуморальными факторами.

В капиллярах кровь течет постоянной струей без пульсирующих толчков со скоростью 0,04 см/с под давлением 15-30 мм рт. ст.

Капилляры в органах, анастомозируя друг с другом, образуют сети. Форма сетей зависит от конструкции органов. В плоских органах - фасции, брюшине, слизистых оболочках, конъюнктиве глаза - формируются плоские сети (рис. 365), в трехмерных - печень и другие железы, легкие - имеются трехмерные сети (рис. 366).


365. Однослойная сеть кровеносных капилляров слизистой оболочки мочевого пузыря.


366. Сеть кровеносных капилляров альвеол легкого.

Число капилляров в организме огромно и их суммарный просвет превосходит диаметр аорты в 600- 800 раз. 1 мл крови разливается по капиллярной площади 0,5 м 2 .

Сосуды – трубковидные образования, которые простилаются по всему телу человека и по которым движется кровь. Давление в системе кровообращения очень велико, поскольку система замкнута. По такой системе кровь достаточно быстро циркулирует.

По истечении многих лет на сосудах образуются препятствия для передвижения крови – бляшки. Это образования с внутренней стороны сосудов. Таким образом, сердце должно интенсивнее качать кровь, чтобы преодолеть преграды в сосудах, что нарушает работу сердца. В этот момент сердце уже не может доставлять кровь к органам тела и не справляется с работой. Но на этой стадии ещё можно вылечиться. Сосуды очищаются от солей и холестериновых наслоений.(Читайте также: Очищение сосудов)

При очищении сосудов возвращается их эластичность и гибкость. Уходят многие болезни, связанные с сосудами. К таковым относят склероз, боли в голове, склонность к инфаркту, паралич. Восстанавливается слух и зрение, уменьшается варикозное расширение вен. Приходит в норму состояние носоглотки.

Кровь циркулирует по сосудам, которые составляют большой и малый круг кровообращения.

Все кровеносные сосуды состоят из трех слоев:

    Внутренний слой сосудистой стенки образуют клетки эндотелия, поверхность сосудов внутри гладкая, что облегчает продвижение крови по ним.

    Средний слой стенок обеспечивает прочность кровеносных сосудов, состоит их мышечных волокон, эластина и коллагена.

    Верхний слой сосудистых стенок составляют соединительные ткани, он отделяет сосуды от близлежащих тканей.

Артерии

Стенки артерий более прочные и толстые, чем у вен, так как кровь продвигается по ним с большим давлением. Артерии разносят кровь, насыщенную кислородом, от сердца к внутренним органам. У мертвецов артерии пустые, что обнаруживается при вскрытии, поэтому раньше считалось, что артерии – это воздухоносные трубки. Это отразилось и на названии: слово «артерия» состоит из двух частей, в переводе с латыни первая часть аеr означает воздух, а tereo – содержать.

В зависимости от строения стенок различают две группы артерий:

    Эластический тип артерий – это сосуды, расположенные ближе к сердцу, к ним относится аорта и её крупные разветвления. Эластический каркас артерий должен быть настолько прочным, чтобы выдерживать давление, с которым кровь выбрасывается в сосуд от сердечных сокращений. Противостоять механическому воздействию и растяжению помогает волокна эластина и коллагена, составляющие каркас средней стенки сосуда.

    Благодаря упругости и прочности стенок эластических артерий кровь непрерывно поступает в сосуды и обеспечивается постоянная её циркуляция для питания органов и тканей, снабжения их кислородом. Левый желудочек сердца сокращается и с силой выбрасывает большой объем крови в аорту, её стенки растягиваются, вмещая в себя содержимое желудочка. После расслабления левого желудочка кровь в аорту не поступает, давление ослабляется, и кровь из аорты поступает в другие артерии, на которые она разветвляется. Стенки аорты обретают прежнюю форму, так как эластино-коллагеновый каркас обеспечивает их упругость и сопротивление растяжению. Кровь продвигается по сосудам непрерывно, поступая небольшими порциями из аорты после каждого сердечного сокращения.

    Упругие свойства артерий также обеспечивают передачу колебаний по стенкам сосудов – это свойство любой упругой системы при механических воздействиях, в роли которого выступает сердечный толчок. Кровь ударяется в упругие стенки аорты, а они передают колебания по стенкам всех сосудов тела. Там, где сосуды подходят близко к коже, эти колебания можно ощутить, как слабую пульсацию. На основе этого явления основаны методы измерения пульса.

    Артерии мышечного типа в среднем слое стенок содержат большое количество волокон гладкой мускулатуры. Это необходимо для обеспечения циркуляции крови и непрерывности её движения по сосудам. Сосуды мышечного типа расположены дальше от сердца, чем артерии эластического типа, поэтом сила сердечного толчка в них ослабевает, чтобы обеспечить дальнейшее продвижение крови необходимо сокращение мышечных волокон. При сокращении гладкой мускулатуры внутреннего слоя артерий, они сужаются, а при их расслаблении – расширяются. В результате кровь продвигается по сосудам с постоянной скоростью и своевременно поступает в органы и ткани, обеспечивая их питание.

Еще одна классификация артерий определяет их расположение по отношению к органу, кровоснабжение которого они обеспечивают. Артерии, которые проходят внутри органа, образуя разветвляющуюся сеть, называются интраорганными. Сосуды, расположенные вокруг органа, до вхождения в него называются экстраорганными. Боковые ветки, которые отходят от одного или разных артериальных стволов, могут снова соединяться или разветвляться на капилляры. В месте их соединения до начала ветвления на капилляры эти сосуды называют анастомозом или соустьем.

Артерии, которые не имеют анастомоза с соседними сосудистыми стволами, называют конечными. К таким, например, относятся артерии селезенки. Артерии, которые образуют соустья, называют анастомизирующими, к этому типу относится большинство артерий. У конечных артерий больше риск закупорки тромбом и высокая предрасположенность к инфаркту, в результате которого может омертветь часть органа.

В последних разветвлениях артерии очень истончаются, такие сосуды называют артериолами, а артериолы уже переходят непосредственно в капилляры. В артериолах есть мышечные волокна, которые выполняют сократительную функцию и регулируют поступление крови в капилляры. Слой гладкомышечных волокон в стенках артериол очень тонкий, в сравнении с артерией. Место разветвления артериолы на капилляры называется прекапилляром, тут мышечные волокна не составляют сплошной слой, а расположены диффузно. Ещё одно отличие прекапилляра от артериолы – отсутствие венулы. Прекапилляр даёт начало многочисленным ветвлениям на мельчайшие сосуды – капилляры.

Капилляры

Капилляры – мельчайшие сосуды, диаметр которых варьируется от 5 до 10 мкм, они имеются во всех тканях, являясь продолжением артерий. Капилляры обеспечивают тканевой обмен и питание, снабжая все структуры организма кислородом. Для того, чтобы обеспечивать передачу кислорода с питательными веществами из крови в ткани, стенка капилляров настолько тонкая, что состоит всего из одного слоя клеток эндотелия. Эти клетки обладают высокой проницаемостью, поэтому сквозь них растворенные в жидкости вещества поступают в ткани, а продукты метаболизма возвращаются в кровь.

Количество работающих капилляров в разных участках тела различается – в большом количестве они сконцентрированы в работающих мышцах, которые нуждаются в постоянном кровоснабжении. Например, в миокарде (мышечном слое сердца) на одном квадратном миллиметре обнаруживается до двух тысяч открытых капилляров, а в скелетных мышцах на ту же площадь приходится несколько сотен капилляров. Не все капилляры функционируют одновременно – многие из них находятся в резерве, в закрытом состоянии, чтобы начать работать при необходимости (например, при стрессе или увеличении физических нагрузок).

Капилляры анастомизируют и, разветвляясь, составляют сложную сеть, основными звеньями которой являются:

    Артериолы – разветвляются на прекапилляры;

    Прекапилляры – переходные сосуды между артериолами и собственно капиллярами;

    Истинные капилляры;

    Посткапилляры;

    Венулы – места перехода капилляр в вены.

В каждом типе сосудов, составляющих эту сеть, действует собственный механизм передачи питательных веществ и метаболитов между содержащейся в них кровью и близлежащими тканями. За продвижение крови и её поступление в мельчайшие сосуды отвечает мускулатура более крупных артерий и артериол. Кроме того, регуляция кровотока осуществляется также мышечными сфинктерами пре- и посткапилляров. Функция этих сосудов в основном распределительная, тогда как истинные капилляры выполняют трофическую (питательную) функцию.

Вены – это другая группа сосудов, функция которой, в отличие от артерий, заключается не в доставке крови к тканям и органам, а в обеспечении её поступления в сердце. Для этого движение крови по венам происходит в обратном направлении – от тканей и органов к сердечной мышце. Ввиду различия функций, строение вен несколько отличается от строения артерий. Фактор сильного давления, которое кровь оказывает на стенки сосудов, в венах проявляется гораздо меньше, чем в артериях, поэтому эластино-коллагеновый каркас в стенках этих сосудов слабее, в меньшем количестве представлены и мышечные волокна. Именно поэтому вены, в которых не поступает кровь, спадаются.

Аналогично с артериями, вены широко разветвляются, образуя сети. Множество микроскопических вен сливаются в единые венозные стволы, которые ведут к самым крупным сосудам, впадающим в сердце.

Продвижение крови по венам возможно благодаря действию на нее отрицательного давления в грудной полости. Кровь продвигается по направлению присасывающей силы в сердце и грудную полость, кроме того, её своевременный отток обеспечивает гладкомышечный слой в стенках сосудов. Движение крови от нижних конечностей вверх затруднено, поэтому в сосудах нижней части тела мускулатура стенок развита сильнее.

Чтобы кровь продвигалась к сердцу, а не в обратном направлении, в стенках венозных сосудов расположены клапаны, представленные складкой эндотелия с соединительнотканным слоем. Свободный конец клапана беспрепятственно направляет кровь в направлении сердца, а отток обратно перегораживается.

Большинство вен проходят рядом с одной или несколькими артериями: возле небольших артерий обычно расположено две вены, а рядом с более крупными – одна. Вены, которые не сопровождают какие-либо артерии, встречаются в соединительной ткани под кожей.

Питание стенок более крупных сосудов обеспечивают артерии и вены меньших размеров, отходящие от того же ствола или от соседних сосудистых стволов. Весь комплекс расположен в окружающем сосуд соединительнотканном слое. Эта структура называется сосудистым влагалищем.

Венозные и артериальные стенки хорошо иннервированы, содержат разнообразные рецепторы и эффекторы, хорошо связанные с руководящими нервными центрами, благодаря чему осуществляется автоматическая регуляция кровообращения. Благодаря работе рефлексогенных участков кровеносных сосудов обеспечивается нервная и гуморальная регуляция метаболизма в тканях.

Функциональные группы сосудов

Всю кровеносную систему по функциональной нагрузке разделяют на шесть разных групп сосудов. Таким образом, в анатомии человека можно выделить амортизирующие, обменные, резистивные, емкостные, шунтирующие и сфинктерные сосуды.

Амортизирующие сосуды

К этой группе, в основном, относятся артерии, в которых хорошо представлен слой эластиновых и коллагеновых волокон. В нее входят самые крупные сосуды – аорта и легочная артерия, а также прилегающие к этим артериям участки. Эластичность и упругость их стенок обеспечивает необходимые амортизирующие свойства, благодаря которым сглаживаются систолические волны, возникающие при сердечных сокращениях.

Рассматриваемый эффект амортизации также называют Windkessel-эффектом, что на немецком языке означает «эффект компрессионной камеры».

Для наглядной демонстрации этого эффекта используют следующий опыт. К ёмкости, которая наполнена водой, присоединяют две трубки, одна из эластичного материала (резина), а другая из стекла. Из твердой стеклянной трубки вода выплескивается резкими прерывистыми толчками, а из мягкой резиновой – вытекает равномерно и постоянно. Этот эффект объясняется физическими свойствами материалов трубки. Стенки эластичной трубки под действием давления жидкости растягиваются, что приводит к возникновению так называемой энергии эластического напряжения. Таким образом, кинетическая энергия, появляющаяся вследствие давления, превращается в потенциальную энергию, повышающую напряжение.

Кинетическая энергия сердечного сокращения действует на стенки аорты и крупных сосудов, которые от нее отходят, вызывая их растяжение. Эти сосуды образуют компрессионную камеру: кровь, поступающая в них под давлением систолы сердца, растягивает их стенки, кинетическая энергия преобразуется в энергию эластического напряжения, что способствует равномерному продвижению крови по сосудам в период диастолы.

Артерии, расположенные дальше от сердца, относятся к мышечному типу, их эластичный слой выражен меньше, в них больше мышечных волокон. Переход от одного типа сосуда к другому происходит постепенно. Дальнейший ток крови обеспечивается сокращением гладкой мускулатуры мышечных артерий. В тоже время, гладкомышечный слой крупных артерий эластического типа практически не влияет на диаметр сосуда, что обеспечивает стабильность гидродинамических свойств.

Резистивные сосуды

Резистивные свойства обнаруживаются у артериол и концевых артерий. Эти же свойства, но в меньшей мере, характерны для венул и капилляров. Резистентность сосудов зависит от площади их поперечного сечения, а у концевых артерий хорошо развит мышечный слой, регулирующий просвет сосудов. Сосуды с небольшим просветом и толстыми прочными стенками оказывают механическое сопротивление току крови. Развитая гладкая мускулатура резистивных сосудов обеспечивает регуляцию объемной скорости крови, контролирует кровоснабжение органов и систем за счет сердечного выброса.

Сосуды-сфинктеры

Сфинктеры расположены в концевых отделах прекапилляров, при их сужении или расширении происходит изменение количества работающих капилляров, обеспечивающих трофику тканей. При расширении сфинктера капилляр переходит в функционирующее состояние, у неработающих капилляров сфинктеры сужены.

Обменные сосуды

Капилляры – это сосуды, выполняющие обменную функцию, осуществляющие диффузию, фильтрацию и трофику тканей. Капилляры не могут самостоятельно регулировать свой диаметр, изменения просвета сосудов происходит в ответ на изменения в сфинктерах прекапилляров. Процессы диффузии и фильтрации происходят не только в капиллярах, но и в венулах, так что эта группа сосудов также относится к обменным.

Емкостные сосуды

Сосуды, которые выступают в качестве резервуаров для больших объемов крови. Чаще всего к емкостным сосудам относятся вены – особенности их строения позволяют вмещать больше 1000 мл крови и выбрасывать её по мере необходимости, обеспечивая стабильность кровообращения, равномерный ток крови и полноценное кровоснабжение органов и тканей.

У человека, в отличие от большинства других теплокровных животных, нет специальных резервуаров для депонирования крови, из которых она могла бы выбрасываться по мере необходимости (у собак, например, эту функцию выполняет селезенка). Накапливать кровь для регуляции перераспределения её объемов по организму могут вены, чему способствует их форма. Уплощенные вены вмещают в себя большие объемы крови, при этом не растягиваясь, но приобретая овальную форму просвета.

К емкостным сосудам относятся крупные вены в области чрева, вены в подсосочковом сплетении кожи, вены печени. Функцию депонирования больших объемов крови могут также выполнять легочные вены.

Шунтирующие сосуды

    Шунтирующие сосуды представляют собой анастомоз из артерий и вен, когда они находятся в открытом состоянии, кровообращение в капиллярах существенно уменьшается. Шунтирующие сосуды разделяют на несколько групп согласно их функции и особенностям строения:

    Присердечные сосуды – к ним относятся артерии эластического типа, полые вены, легочный артериальный ствол и легочная вена. Ими начинаются и заканчиваются большой и малый круг кровообращения.

    Магистральные сосуды – крупные и средние сосуды, вены и артерии мышечного типа, расположенные вне органов. С их помощью происходит распределение крови по всем участкам организмы.

    Органные сосуды – интраорганные артерии, вены, капилляры, обеспечивающие трофику тканей внутренних органов.

    Наиболее опасные заболевания сосудов, представляющие угрозу для жизни: аневризма брюшной и грудной аорты, артериальная гипертензия, ишемическая болезнь, инсульт, заболевания почечных сосудов, атеросклероз сонных артерий.

    Заболевания сосудов ног – группа заболеваний, которые приводят к нарушению циркуляции крови по сосудам, патологиям клапанов вен, нарушению свертываемости крови.

    Атеросклероз нижних конечностей – патологический процесс затрагивает крупные и средние сосуды (аорта, подвздошные, подколенные, бедренные артерии), вызывая их сужение. В результате кровоснабжение конечностей нарушается, появляются сильные боли, нарушается работоспособность пациента.

    Варикозное расширение вен – заболевание, в результате которого наступает расширение и удлинение вен верхних и нижних конечностей, истончение их стенок, образование варикозных узлов. Изменения, происходящие при этом в сосудах обычно стойкие и необратимые. Варикоз чаще встречается у женщин — у 30% женщин после 40 и всего у 10% мужчин того же возраста. (Читайте также: Варикоз — причины, симптомы и осложнения)

К какому врачу обращаться с сосудами?

Заболеваниями сосудов, их консервативным и хирургическим лечением и профилактикой занимаются врачи-флебологи и ангиохирурги. После всех необходимых диагностических процедур, врач составляет курс лечения, где совмещают консервативные методы и оперативное вмешательство. Медикаментозная терапия заболеваний сосудов направлена на улучшение реологии крови, липидного обмена с целью профилактики атеросклероза и других заболеваний сосудов, вызванных повышенным уровнем холестерина крови. (Читайте также: Повышенный холестерин в крови – что это значит? Каковы причины?) Врач может назначить сосудорасширяющие препараты, лекарственные средства для борьбы с сопутствующими заболеваниями, например, гипертонией. Кроме того, пациенту прописывают витаминные и минеральные комплексы, антиоксиданты.

Курс лечения может включать процедуры физиотерапии – баротерапия нижних конечностей, магнито- и озонотерапия.

Функции кровеносных сосудов состоят в поддержании постоянного и непрерывного движения крови (оттока крови от сердца и возвращении ее к нему), распределения крови между разными органами и тканями и обеспечении их кровью в соответствии с их потребностями. Различные кровеносные сосуды выполняют неодинаковые функции,
ОС зависит от строения сосудов и их локализации по отношению к сердцу. По функциям выделяют амортизирующие сосуды, сосуды сопротивления, или резистивные, сфинктерных сосуды, обменные, емкостные и шунтирующие сосуды.
Амортизирующие сосуды – это сосуды эластичного типа – аорта легочная артерия. Благодаря хорошо выраженным упругим свойствам их стенки они сглаживают, амортизируют резкие колебания давления в артериальной системе при каждом выбросе сердцем крови и поддерживают непрерывный поток крови от аорты по всем сосудам.
Сосуды сопротивления (резистивные сосуды) – это преимущественно артерии мышечного типа – мелкие артерии и артериолы, которые оказывают наибольшее сопротивление движению крови. Сужаясь или расширяясь за счет сокращения или расслабления гладкой мускулатуры стенки, они меняют свое сопротивление и таким образом осуществляют перераспределение крови между органами и тканями. Конечно сопротивление движению крови поступают и другие кровеносные сосуды – магистральные артерии, капилляры, венулы и вены различного калибра. Но наибольший вклад в общий сосудистого сопротивления (почти 50%) создают конечные артерии и артериолы, почему их и назвали резистивными. Это прекапиллярные сосуды сопротивления. Капилляры тоже добавляют свою долю в общий сопротивления, тогда как сопротивление посткапиллярных сосудов – венул и вен очень незначительный – всего 6-7%.
Сосудисто-сфинктера – это участки артериол в месте отхождения от них капилляров, где находятся последние в артериальном русле гладенькомьзови клетки (всего 1-3), которые образуют сфинктер-образное кольцо. При их сокращении кольцо сжимается, и в капилляр перестает поступать кровь. Таким образом сосуды-сфинктеры регулируют количество открытых капилляров и их поверхность.
К обменных сосудов относятся сосуды, стенка которых лишена медиа и почти полностью адвентиции, благодаря чему через него может происходить обмен веществами между кровью и окружающими тканями. Это кровеносные капилляры и венулы, которые также не имеют гладенькомьзових клеток.
Емкостные, или аккумулирующие, сосуды. Этот тип сосудов включая мелкие, средние и крупные вены, их диаметр значительно больше, чем в соответствующих артерий, а кроме того, в зависимости от уровня давления в них они могут менять профиль поперечного сечения и, соответственно, свою емкость. Благодаря этому вены могут содержать довольно значительные объемы крови. Так, в условиях покоя организма в венах содержится более 70% общего объема крови, в артериях – 15 и в капиллярах – до 10% крови (табл.4.1.). Емкостного функцию выполняют также кровяные депо, которые, по сути, являются видоизмененными венами (см. ниже).
Шунтирующие сосуды, или артерио-венозные анастомозы – это довольно мелкие сосуды диаметром от 20 до 500 мкм с хорошо развитым мышечным слоем, которые соединяют артериолы с венулами. их функция заключается в шунтировании, опрокидывании артериальной крови в венозное русло в обход капилляров или поддержании обходного (коллатерального) кровотока в области ткани, где одна из сосудов была заблокирована тромбом или травмой. Они присутствуют в тех тканях, где по тем или иным причинам возникает необходимость прекратить движение крови через капилляры, не останавливая кровотока в данной области сосудистого русла. Например, в коже на холоде артерио-венозные анастомозы открываются, и кровь переходит из артерий в вены, не попадая в ближе к поверхности расположены капилляры, уменьшает потери тепла организмом. При необходимости отдать избыток тепла анастомозы, наоборот, закрываются, и тогда кровь течет через капилляры, идет теплоотдача, кожа приобретает розовый цвет.
Например, такие
органы, как селезенка, печень, легкие и кожа, несмотря на относительно небольшую массу, вместе вмещает почти половину всей крови организма и могут вытолкнуть от 40 до 75% удерживаемой в своих венах крови. В то же время в сосудах скелетных мышц и подкожной жировой ткани, масса которых достигает половины массы тела, содержится лишь четверть всей крови организма, и мобилизовать, то есть в случае необходимости эти ткани могут выбросить в кровеносное русло не более 5% удерживаемой крови. У человека кровяные депо менее развиты, но у большинства животных они могут содержать до 50% крови и при необходимости выбрасывать в сосудистое русло 25-30% всей крови организма.
Механизм депонирование крови во всех кровяных депо в принципе одинаков: тонкостенные мелкие сосуды – синусы, венулы или вены – легко растягиваются повышенным давлением и вмещает довольно значительные объемы крови. При этом сфинктера на выходе сосудов из органа, сокращаясь, частично или полностью перекрывают вены и обеспечивают содержание в органе депонированной крови. В случае необходимости (физическая нагрузка, эмоциональное напряжение, стресс) возбуждения симпатической нервной системы приводит к сужению депонированных сосудов, расслабление сфинктеров и выхода крови в сосудистое русло.
Селезенка. При массе, не превышает 1% массы тела человека, она удерживает около 15% всей крови и способна выбрасывать в системный кровоток до 75% депонированной крови. Кровь попадает в селезенки по одноименной артерии, расходится по ее капиллярах, а из них поступает в венозных синусов – тонкостенных образований, легко растягиваются и наполняются кровью. На границе между синусами и венулами находятся сфинктеры, которые при сокращении почти полностью перекрывают выход из синуса. Остается лишь узкая щель, сквозь которую постепенно профильтровывается плазма, а форменные элементы крови задерживаются. Капилляры, синусы и венулы селезенки не имеют мышечных клеток и способны к активному сокращению. Во время мобилизации депонированной крови под влиянием симпатической нервной системы раскрываются сфинктера и сокращаются гладкие мышцы соединительнотканной капсулы и трабекул, которые образуют каркас селезенки. В результате происходит быстрое изгнание обогащенной эритроцитами крови в венозное русло.
Печень также является важным депо крови. В ее сосудах, преимущественно воротной и печеночных венах и синусоида, содержится в
20% всей крови. Однако она не исключается из кровообращения, как это имеет место в селезенке, а постоянно, хоть и медленно, течет через печень. Скорость обновления крови в печени и процессы депонирования и мобилизации крови зависят от соотношения скоростей притока крови к печени и ее оттока. Последнее регулируется сфинктерами в печеночных венах. Адреналин и симпатические нервы раскрывают эти сфинктеры и сужают внутрипеченочные сосуды, что приводит к быстрому выбросу почти половины депонированной в печени крови. Гистамин, наоборот, сужает сфинктера и расширяет венозные сосуды печени, тем самым увеличивая объем депонированной крови в ней.
Легкие В легких содержится около 10% всей крови организма, причем распределяется она не только в венах, но также и в артериях, стенка которых значительно тоньше и способна больше растягиваться, чем в артериях большого круга. Мобилизация депонированной в легких крови происходит при физической нагрузке, гипоксии, но чаще всего это имеет место при ортостазе: переход человека из горизонтального положения в вертикальное головой вверх приводит к уменьшению объема крови в легких почти на 30%. При этом происходит выброс дополнительного объема крови в сосуды большого круга кровообращения. Когда человек ложится, кровенаполнение легких увеличивается, а объем циркулирующей крови соответственно уменьшается.
Кожа. Вены и капилляры кожи у человека могут содержать до 1 л крови. Депонирование крови кожей осуществляется не столько ради уменьшения объема циркулирующей крови, сколько для обеспечения терморегуляции. На холоде, когда возникает потребность уменьшить теплоотдачу, пре- и посткапиллярные сфинктера закрываются, а расположенные глубже в подкожной клетчатке артериовенозные анастомозы открываются и через них поддерживается кровообращение. Депонированные в капиллярах и венулах поверхностных слоев кожи кровь исключается из кровообращения и играет роль теплоизоляции. При необходимости отдать лишнее тепло кровоток в капиллярах кожи возрастает, но теперь кровь не депонируется, а быстро проходит сквозь капилляры в вены, отдает через поверхность тела свое тепло и возвращается к сердцу.