II. Статистическая термодинамика. Статистическая физика и термодинамика Статистическая физика и термодинамика

Определение 1

Статистическая термодинамика – обширный раздел статистической физики, который формулирует законы, связывающие все молекулярные свойства физических веществ с измеряемыми в ходе экспериментов величинами.

Рисунок 1. Статистическая термодинамика гибких молекул. Автор24 - интернет-биржа студенческих работ

Статистическое изучение материальных тел посвящено обоснованию постулатов и методов термодинамики равновесных концепций и вычислению важных функций по молекулярным постоянным. Основу данного научного направления составляют гипотезы и подтвержденные опытами предположения.

В отличие от классической механики, в статистической термодинамике изучаются только средние показания координат и внутренних импульсов, а также возможность появления новых значений. Термодинамические свойства макроскопической среды рассматриваются как общие параметры случайных характеристик или величин.

На сегодняшний день ученые различают классическую (Больцман, Максвелл), и квантовую (Дирак, Ферми, Эйнштейн) термодинамику. Основная теория статистического исследования: существует однозначная и стабильная взаимосвязь молекулярных особенностей частиц, которые составляют конкретную систему.

Определение 2

Ансамбль в термодинамике – практически бесконечное количество термодинамических концепций, которые находятся в различных, равновероятных микросостояниях.

Средние параметры физически наблюдаемого элемента за большой период времени начинает приравниваться к общему значению по ансамблю.

Основная идея статистической термодинамики

Рисунок 2. Статистическая формулировка 2 закона термодинамики. Автор24 - интернет-биржа студенческих работ

Статистическая термодинамика устанавливает и реализует взаимодействие микроскопической и макроскопической систем. В первом научном подходе, базирующемся на классической или квантовой механике, детально описываются внутренние состояния среды в виде координат и импульса каждой отдельной частицы в определенный момент времени. Микроскопическая формулировка требует решения сложных уравнений движения для множества переменных.

Макроскопический метод, используемый классической термодинамика, характеризует исключительно внешнее состояние системы и применяет для этого небольшое количество переменных:

  • температуру физического тела;
  • объем взаимодействующих элементов;
  • число элементарных частиц.

Если все вещества находятся в равновесном состоянии, то их макроскопические показатели будут постоянны, а микроскопические коэффициенты постепенно видоизменяться. Это означает, что каждому состоянию в статистической термодинамике соответствует несколько микросостояний.

Замечание 1

Основная идея изучаемого раздела физики заключается в следующем: если каждому положению физических тел соответствует много микросостояний, то каждое из них в результате вносит в общее макросостояние весомый вклад.

Из этого определения следует выделить элементарные свойства функции статистического распределения:

  • нормировка;
  • положительная определенность;
  • среднее значение функции Гамильтона.

Усреднение по существующим микросостояниям проводят с применением понятия статистического ансамбля, находящегося в любых микросостояниях, соответствующих одному макросостоянию. Смысл данной функции распределения состоит в том, что она в целом определяет статистический вес каждого состояния концепции.

Основные понятия в статистической термодинамике

Для статистического и грамотного описания макроскопических систем ученые используют данные ансамбля и фазового пространства, что позволяет решить классические и квантовые задачи методом теории вероятности. Микроканонический ансамбль Гиббса зачастую используется при исследовании изолированных систем, имеющих постоянный объем и количество одинаково заряженных частиц. Данный способ применяется для тщательного описания систем стабильного объема, которые находятся в тепловом равновесии с окружающей средой при постоянном показателе элементарных частиц. Параметры состояния большого ансамбля позволяют определить химический потенциал материальных веществ. Изобарно-изотермическая система Гиббса используется для объяснения взаимодействия тел, находящихся в тепловом и механическом равновесии в определенном пространстве при постоянном давлении.

Фазовое пространство в статистической термодинамике характеризует механико-многомерное пространство, осями которого выступают все обобщенные координаты и сопряженные им внутренние импульсы системы с постоянными степенями свободы. Для состоящей из атомов системы, показатели которой соответствуют декартовой координате, совокупность параметров и тепловой энергии будет обозначаться соответственно начальному состоянию. Действие каждой концепции изображается точкой в фазовом пространстве, а изменение макросостояния во времени - движением точки вдоль траектории конкретной линии. Для статистического описания свойств окружающей среды вводятся понятия функции распределения и фазового объема, характеризующих плотность вероятности нахождения новой точки, изображающей реальное состояние системы, а также в веществе вблизи линии с определенными координатами.

Замечание 2

В квантовой механике вместо фазового объема применяют понятие дискретного энергетического спектра системы конечного объема, так как этот процесс определяется не координатами и импульсом, а волновой функцией, которой в динамическом состоянии соответствует весь спектр квантовых состояний.

Функция распределения классической системы определят возможность реализации конкретного микросостояния в одном элементе объема фазовой среды. Вероятность нахождения частиц в бесконечно малом пространстве возможно сравнить с интегрированием элементов по координатам и импульсам системы. Состояние термодинамического равновесия следует рассматривать как предельный показатель всех веществ, где для функции распределения возникают решения уравнения движения составляющих концепцию частиц. Вид такого функционала, который одинаков для квантовой и классической системы, был впервые установлен физиком-теоретиком Дж. Гиббсом.

Вычисления статистической функции в термодинамике

Для правильного вычисления термодинамической функции необходимо применить любое физическое распределение: все элементы в системе эквивалентны друг другу и соответствуют разным внешним условиям. Микроканоническое распределение Гиббса используется главным образом в теоретических исследованиях. Для решения конкретных и более сложных задач рассматривают ансамбли, которые обладают энергией со средой и могут осуществлять обмен частицами и энергией. Данный метод очень удобен при исследовании фазового и химического равновесий.

Статистические суммы позволяют ученым точно определить энергию и термодинамические свойства системы, полученные с помощью дифференцирования показателей по соответствующим параметрам. Все эти величины приобретают статистический смысл. Так, внутренний потенциал материального тела отождествляется со средней энергией концепции, что позволяет изучать первое начало термодинамики, как основной закон сохранения энергии при нестабильном движении составляющих систему элементов. Свободная энергия напрямую связана со статистической суммой системы, а энтропия - с количеством микросостояний в конкретном макросостоянии, следовательно, с его вероятностью.

Смысл энтропии, как меры возникновения нового состояния, сохраняется в связи с произвольным параметром. В состоянии полного равновесия энтропия изолированной системы имеет максимальное значение при изначально правильно заданных внешних условиях, то есть равновесное общего состояние является вероятным результатом с максимально статистическим весом. Поэтому плавный переход из неравновесной позиции в равновесную есть процесс изменения в более реальное состояние.

В этом заключается статистический смысл закона возрастания внутренней энтропии, согласно которому параметры замкнутой системы увеличиваются. При температуре абсолютного нуля любая концепция находится в стабильном состоянии. Это научное утверждение представляет собой третье начало термодинамики. Стоит отметить, что для однозначной формулировки энтропии необходимо пользоваться только квантовым описанием, так как в классической статистике данный коэффициент определен с максимальной точностью до произвольного слагаемого.

Термодинамическая система, коллектив и его состояния. Метод ансамблей. Энтропия и вероятность. Канонический ансамбль Гиббса. Каноническое распределение. Фактор Гиббса. Вероятности, свободная энергия и статистическая сумма.

Система и подсистемы. Общие свойства статистических сумм. Статистическая сумма пробной частицы и коллектива.

Идеальный газ. Распределение Больцмана. Фактор Больцмана. Квантовые состояния и дискретные уровни простых молекулярных движений. Статистический вес уровня (вырожденность). Суммы по уровням и суммы по состояниям.

Системы локализованные и делокализованные. Трансляционная сумма состояний, неразличимость частиц, стандартный объём. Вращательная сумма по уровням двухатомной молекулы, ориентационная неразличимость и число симметрии. Статистические суммы для одной и нескольких вращательных степеней свободы. Колебательная статистическая сумма в гармоническом приближении. Коррекция статистических сумм простых движений. Нулевой уровень колебаний, шкала молекулярной энергии, и молекулярная сумма состояний.

Свободная энергия A и статистические формулы для термодинамических функций: энтропия S, давление p, внутренняя энергия U, энтальпия H, энергия Гиббса G, химический потенциал m. Химическая реакция и константа равновесия Kp в системе идеальных газов.

1. Введение. Краткое напоминание основных сведений из термодинамики.

…Удобно термодинамические аргументы и определённые с их помощью функции состояния представить в виде единого массива взаимосвязанных переменных. Этот способ был предложен Гиббсом. Так, скажем, энтропия, которая по определению есть функция состояния, перемещается в разряд одной из двух естественных калорических переменных, дополняя в этом своём качестве температуру. И если в любых калорических процессах температура выглядит как интенсивная (силовая) переменная, то энтропия обретает статус экстенсивной переменной – тепловой координаты.

Этот массив всегда можно дополнить новыми функциями состояния или по необходимости уравнениями состояния, связывающими между собою аргументы. Число аргументов, минимально необходимое для исчерпывающего термодинамического описания системы, называется числом степеней свободы. Оно определяется из фундаментальных соображений термодинамики и может быть уменьшено благодаря различным уравнениям связи.

В таком едином массиве можно менять ролями аргументы и функции состояния. Этот приём широко используется в математике при построении обратных и неявных функций. Цель подобных логических и математических приёмов (достаточно тонких) одна – достижение максимальной компактности и стройности теоретической схемы.

2. Характеристические функции. Дифференциальные уравнения Массье.

Массив переменных p, V, T удобно дополнить функцией состояния S. Между ними имеется два уравнения связи. Одно из них выражено в виде постулируемой взаимозависимости переменных f(p,V,T) =0. Говоря об "уравнении состояния", чаще всего именно эту зависимость имеют в виду. Однако любой функции состояния отвечает новое уравнение состояния. Энтропия по определению есть функция состояния, т.е. S=S(p,V,T). Стало быть, между четырьмя переменными существует две связи, и в качестве независимых термодинамических аргументов можно выделить всего два, т.е. для исчерпывающего термодинамического описания системы достаточно лишь двух степеней свободы. Если этот массив переменных дополнить новой функцией состояния, то наряду с новой переменной появляется и ещё одно уравнение связи, и, стало быть, число степеней свободы не увеличится.

Исторически первой из функций состояния была внутренняя энергия. Поэтому с её участием можно сформировать исходный массив переменных:

Массив уравнений связи в таком случае содержит функции вида

f(p,V,T) =0, 2) U=U(p,V,T), 3) S=S(p,V,T).

Эти величины можно менять ролями или формировать из них новые функции состояния, но в любом случае суть дела не изменится, и останутся две независимые переменные. Теоретическая схема не выйдет за пределы двух степеней свободы до тех пор, пока не встанет необходимость учесть новые физические эффекты и связанные с ними новые превращения энергии, и их окажется невозможно охарактеризовать без расширения круга аргументов и числа функций состояния. Тогда может измениться и число степеней свободы.

(2.1)

3. Свободная энергия (энергия Гельмгольца) и её роль.

Состояние изотермической системы с неизменным объёмом целесообразно описывать посредством свободной энергии (функции Гельмгольца). В этих условиях она является характеристической функцией и изохорно-изотермическим потенциалом системы.

Посредством частного дифференцирования из неё далее можно извлечь прочие необходимые термодинамические характеристики, а именно:

(3.1)

Построить явный вид функции свободной энергии для некоторых относительно простых систем можно методом статистической термодинамики.

4. О равновесии.

В любом естественно протекающем (самопроизвольном или свободном) процессе свободная энергия системы понижается. При достижении системой состояния термодинамического равновесия её свободная энергия достигает минимума и уже в равновесии далее сохраняет постоянное значение. Из равновесия систему можно вывести за счёт внешних сил, повышая её свободную энергию. Такой процесс уже не может быть свободным - он будет вынужденным.

Микроскопические движения частиц и в равновесии не прекращаются, и в системе, состоящей из огромного числа частиц и подсистем любой природы, возможно множество различных частных вариантов и комбинаций отдельных частей и внутри них, но все они не выводят систему из равновесия.

Термодинамическое равновесие в макросистеме совсем не означает, что и в её микроскопических фрагментах исчезают все виды движения. Напротив, равновесие обеспечивается динамикой именно этих микроскопических движений. Они-то осуществляют непрерывное выравнивание - сглаживание наблюдаемых макроскопических признаков и свойств, не допуская их выбросов и чрезмерных флуктуаций.

5. О статистическом методе.

Основной целью статистического метода является установление количественной связи между характеристиками механических движений отдельных частиц, составляющих равновесный статистический коллектив, и усреднёнными свойствами этого коллектива, которые доступны для термодинамических измерений макроскопическими методами.

Цель состоит в том, чтобы на основании механических характеристик движений отдельных микроэлементов равновесного коллектива вывести количественные законы для термодинамических параметров системы.

6. Равновесия и флуктуации. Микросостояния.

Согласно методу Гиббса термодинамическая система это коллектив - совокупность очень большого числа элементов - однотипных подсистем.

Каждая подсистема в свою очередь может также состоять из очень большого числа иных ещё более мелких подсистем и в свою очередь может играть роль вполне самостоятельной системы.

Все естественные флуктуации внутри равновесной системы равновесия не нарушают, они совместимы с устойчивым макроскопическим состоянием огромного коллектива частиц. Они просто перераспределяют признаки отдельных элементов коллектива. Возникают разные микросостояния, и все они суть версии одного и того же наблюдаемого макросостояния.

Каждая отдельная комбинация состояний элементов коллектива порождает лишь одно из огромного множества возможных микросостояний макросистемы. Все они в физическом смысле равноценны, все приводят к одному и тому же набору измеримых физических параметров системы и отличаются лишь какими-то деталями распределения состояний между элементами …

Все микросостояния совместимы с макроскопическим - термодинамическим равновесием, и числовой разброс отдельных составляющих свободной энергии (её энергии и энтропии) является вполне обычным обстоятельством. Надо понимать, что разброс возникает за счёт непрерывного обмена энергией между частицами – элементами коллектива. У одних элементов она уменьшается, но при этом у других увеличивается.

Если система находится в термостате, то ещё непрерывно осуществляется обмен энергией и с окружающей средой. Происходит естественное энергетическое перемешивание коллектива, за счёт непрерывного обмена между микрочастицами коллектива. Равновесие постоянно поддерживается через тепловой контакт с внешним термостатом. Так в статистике чаще всего именуют окружающую среду.

7. Метод Гиббса. Статистический ансамбль и его элементы.

Создавая универсальную схему статистической механики, Гиббс использовал удивительно простой приём.

Любая реальная макроскопическая система это коллектив из огромного множества элементов – подсистем. Подсистемы могут иметь и макроскопические размеры, и могут быть микроскопическими, вплоть до атомов и молекул. Всё зависит от рассматриваемой задачи и уровня исследования.

В разные моменты времени в разных точках реальной системы, в разных пространственных регионах макроскопического коллектива мгновенные характеристики его малых элементов могут быть различны. "Неоднородности" в коллективе постоянно мигрируют.

Атомы и молекулы могут находиться в разных квантовых состояниях. Коллектив огромный, и в нём представлены различные комбинации состояний физически одинаковых частиц. На атомно-молекулярном уровне всегда происходит обмен состояниями, имеет место их непрерывное перемешивание. Благодаря этому свойства различных фрагментов макроскопической системы выравниваются, и физически наблюдаемое макроскопическое состояние термодинамической системы внешне выглядит неизменным...

СТАТИСТИЧЕСКАЯ ТЕРМОДИНАМИКА , раздел стати-стич. физики, посвященный обоснованию законов термодинамики на основе законов взаимод. и движения составляющих систему частиц. Для систем в равновесном состоянии статистическая термодинамика позволяет вычислять термодинамические потенциалы , записывать уравнения состояния , условия фазовых и хим. равновесий . Неравновесная статистическая термодинамика дает обоснование соотношений (ур-ний переноса энергии, импульса, массы и их граничных условий) и позволяет вычислять входящие в ур-ния переноса кинетич. коэффициенты. Статистическая термодинамика устанавливает количеств. связь между микро- и макросвойствами физ. и хим. систем. Расчетные методы статистической термодинамики используются во всех направлениях совр. теоретич. химии .

Основные понятия. Для статистич. описания макроскопич. систем Дж. Гиббсом (1901) предложено использовать понятия статистич. ансамбля и фазового пространства, что позволяет применять к решению задач методы теории вероятности. Статистич. ансамбль-совокупность очень большого числа одинаковых систем мн. частиц (т. е. "копий" рассматриваемой системы), находящихся в одном и том же макросостоянии, к-рое определяется параметрами состояния ; микросостояния системы при этом могут различаться. Осн. статистич. ансамбли-микроканонич., канонич., большой канонич. и изобарно-изотермический.

Микроканонич. ансамбль Гиббса используетя при рассмотрении изолированных систем (не обменивающихся энергией E с окружающей средой), имеющих постоянный объем V и число одинаковых частиц N (Е, V и N- параметры состояния системы). Канонич. ансамбль Гиббса используется для описания систем постоянного объема, находящихся в тепловом равновесии с окружающей средой (абс. т-ра Т) при постоянном числе частиц N (параметры состояния V, Т, N ). Большой канонич. ансамбль Гиббса используется для описания открытых систем , находящихся в тепловом равновесии с окружающей средой (т-ра Т) и материальном равновесии с резервуаром частиц (осуществляется обмен частицами всех сортов через "стенки", окружающие систему объемом V). Параметры состояния такой системы-V, Т и m -химический потенциал частиц. Изобарно-изотермич. ансамбль Гиббса используется для описания систем, находящихся в тепловом и мех. равновесии с окружающей средой при постоянном давлении P (параметры состояния Т, P, N ).

Фазовое пространство в статистич. механике-многомерное пространство, осями к-рого служат все обобщенные координаты q i и сопряженные им импульсы p i (i =1,2,..., М) системы с М степенями свободы. Для системы, состоящей из N атомов , q i и p i соответствуют декартовой координатеи компоненте импульса (a = х, у, z) нек-рого атома j и М = 3N . Совокупность координат и импульсов обозначаются q и p соответственно. Состояние системы изображается точкой в фазовом пространстве размерности 2М, а изменение состояния системы во времени-движением точки вдоль линии, наз. фазовой траекторией. Для статистич. описания состояния системы вводятся понятия фазового объема (элемента объема фазового пространства) и ф-ции распределения f(p, q), к-рая характеризует плотность вероятности нахождения точки, изображающей состояние системы, в элементе фазового пространства вблизи точки с координатами р, q. В квантовой механике вместо фазового объема используют понятие дискретного энергетич. спектра системы конечного объема, т.к. состояние отдельной частицы определяется не импульсом и координатами, а волновой ф-цией, к-рой в стационарном динамич. состоянии системы соответствует энергетич. спектр квантовых состояний .

Функция распределения классич. системы f(p, q)характеризует плотность вероятности реализации данного микро состояния (р, q) в элементе объема dГ фазового пространства. Вероятность пребывания N частиц в бесконечно малом объеме фазового пространства равна:

где dГ N - элемент фазового объема системы в единицах h 3N , h-постоянная Планка; делитель N! учитывает тот факт, что перестановка тождеств. частиц не меняет состояния системы. Ф-ция распределения удовлетворяет условию нормировки т f(p, q)dГ N = 1, т.к. система достоверно находится в к.-л. состоянии. Для квантовых систем ф-ция распределения определяет вероятность w i , N нахождения системы из N частиц в квантовом состоянии , задаваемом набором квантовых чисел i , с энергией E i,N при условии нормировки

Среднее значение в момент времени т (т.е. по бесконечно малому интервалу времени от т до т + dт)любой физ. величины А(р, q), являющейся ф-цией координат и импульсов всех частиц системы, с помощью ф-ции распределения вычисляется по правилу (в т.ч. и для неравновесных процессов):

Интегрирование по координатам проводится по всему объему системы, а интегрирование по импульсам от - , до +, . Состояние термодинамич. равновесия системы следует рассматривать как предел т: , . Для равновесных состояний ф-ции распределения определяются без решения ур-ния движения составляющих систему частиц. Вид этих ф-ций (одинаковый для классич. и квантовых систем) был установлен Дж. Гиббсом (1901).

В микроканонич. ансамбле Гиббса все микросостояния с данной энергией Е равновероятны и ф-ция распределения для классич. систем имеет вид:

f(p,q) = Ad ,

где d -дельта-ф-ция Дирака, Н(р,q)-ф-ция Гамильтона, представляющая собой сумму кинетич. и потенц. энергий всех частиц; постоянная А определяется из условия нормировки ф-ции f(p, q). Для квантовых систем при точности задания квантового состояния , равной величине D E, в соответствии с соотношением неопределенностей между энергией и временем (между импульсом и координатой частицы), ф-ция w (E k) = -1 , если ЕE k E + D E, и w (E k) = 0, если E k < Е и E k > E + D E. Величина g(E, N, V)-т. наз. статистич. вес , равный числу квантовых состояний в энергетич. слое D E. Важное соотношение статистической термодинамики -связь энтропии системы со статистич. весом :

S(E, N, V) = klng(E, N, V), где k-Больцмана постоянная.

В канонич. ансамбле Гиббса вероятность нахождения системы в микросостоянии, определяемом координатами и импульсами всех N частиц или значениями E i,N , имеет вид: f(p, q) = exp {/kT}; w i,N = exp[(F - E i,N)/kT], где F-своб. энергия (энергия Гельмгольца), зависящая от значений V, Т, N:

F = -kTlnZ N ,

где Z N -статистич. сумма (в случае квантовой системы) или статистич. интеграл (в случае классич. системы), определяемые из условия нормировки ф-ций w i,N или f(p, q):


Z N = т exp[-H(р, q)/kT]dpdq/(N!h 3N)

(сумма по г берется по всем квантовым состояниям системы, а интегрирование проводится по всему фазовому пространству).

В большом канонич. ансамбле Гиббса ф-ция распределения f(p, q) и статистич. сумма X , определяемая из условия нормировки, имеют вид:

где W -термодинамич. потенциал, зависящий от переменных V, Т, m (суммирование ведется по всем целым положит. N ). В изобарно-изотермич. ансамбле Гиббса ф-ция распределения и статистич. сумма Q, определяемая из условия нормировки, имеют вид:

где G- энергия Гиббса системы (изобарно-изотермич. потенциал, своб. энтальпия).

Для вычисления термодинамич. ф-ции можно использовать любое распределение: они эквивалентны друг другу и соответствуют разным физ. условиям. Микроканонич. распределение Гиббса применяется гл. обр. в теоретич. исследованиях. Для решения конкретных задач рассматривают ансамбли, в к-рых есть обмен энергией со средой (канонич. и изобарно-изотермич.) или обмен энергией и частицами (большой канонич. ансамбль). Последний особенно удобен для изучения фазового и хим. равновесий . Статистич. суммы Z N и Q позволяют определить энергию Гельмгольца F, энергию Гиббса G, а также термодинамич. св-ва системы, получаемые дифференцированием статистич. суммы по соответствующим параметрам (в расчете на 1 моль в-ва): внутр. энергию U = RT 2 (9 lnZ N /9 T) V , энтальпию H = RT 2 (9 lnQ/9 T) P , энтропию S = RlnZ N + RT(9 lnZ N /9 T) V = = R ln Q + RT(9 ln Q/9 T) P , теплоемкость при постоянном объеме С V = 2RT(9 lnZ N /9 T) V + RT 2 (9 2 lnZ N /9 T 2) V , теплоемкость при постоянном давлении С Р = 2RT (9 lnZ N /9 T) P + + RT 2 (9 2 lnZ N /9 T 2) P и т.д. Соотв. все эти величины приобретают и статистич. смысл. Так, внутренняя энергия отождествляется со средней энергией системы, что позволяет рассматривать первое начало термодинамики как закон сохранения энергии при движении составляющих систему частиц; своб. энергия связана со статистич. суммой системы, энтропия-с числом микросостояний g в данном макросостоянии, или статистич. весом макросостояния, и, следовательно, с его вероятностью. Смысл энтропии как меры вероятности состояния сохраняется по отношению к произвольным (неравновесным) состояниям. В состоянии равновесия энтропия изолир. системы имеет максимально возможное значение при заданных внеш. условиях (Е, V, N), т. е. равновесное состояние является наиб. вероятным состоянием (с макс. статистич. весом). Поэтому переход из неравновесного состояния в равновесное есть процесс перехода из менее вероятных состояний в более вероятное. В этом заключается статистич. смысл закона возрастания энтропии , согласно к-рому энтропия замкнутой системы может только увеличиваться (см. Второе начало термодинамики). При т-ре абс. нуля любая система находится в осн. состоянии, в к-ром w 0 = 1 и S = 0. Это утверждение представляет собой третье начало термодинамики (см. Тепловая теорема). Существенно, что для однозначного определения энтропии нужно пользоваться квантовым описанием, т.к. в классич. статистике энтропия м. б. определена только с точностью до произвольного слагаемого.

Идеальные системы. Расчет статистич. сумм большинства систем представляет сложную задачу. Она существенно упрощается в случае газов , если вкладом потенц. энергии в полную энергию системы можно пренебречь. В этом случае полная ф-ция распределения f(p, q) для N частиц идеальной системы выражается через произведение одно-частичных ф-ций распределения f 1 (p, q):


Распределение частиц по микросостояниям зависит от их кинетич. энергии и от квантовых св-в системы, обусловлен ных тождественностью частиц. В квантовой механике все частицы разделяются на два класса: фермионы и бозоны. Тип статистики, к-рой подчиняются частицы, однозначно связан с их спином .

Статистика Ферми-Дирака описывает распределение в системе тождеств. частиц с полуцелым спином 1 / 2 , 3 / 2 ,... в единицах ђ = h/2p . Частица (или квазичастица), подчиняющаяся указанной статистике, наз. фермионом. К фер-мионам относятся электроны в атомах , металлах и полупроводниках , атомные ядра с нечетным атомным номером , атомы с нечетной разностью атомного номера и числа электронов , квазичастицы (напр., электроны и дырки в твердых телах) и т.д. Данная статистика была предложена Э.Ферми в 1926; в том же году П.Дирак выяснил ее квантовомех. смысл. Волновая ф-ция системы фермионов антисимметрична, т.е. меняет свой знак при перестановке координат и спинов любой пары тождеств. частиц. В каждом квантовом состоянии может находиться не более одной частицы (см. Паули принцип). Среднее число частиц n i идеального газа фермионов, находящихся в состоянии с энергией E i , определяется ф-цией распределения Ферми-Дирака:

n i ={1+exp[(E i -m )/kT]} -1 ,

где i-набор квантовых чисел, характеризующих состояние частицы.

Статистика Бозе-Эйнштейна описывает системы тождеств. частиц с нулевым или целочисленным спином (0, ђ, 2ђ, ...). Частица или квазичастица, подчиняющаяся указанной статистике, наз. бозоном. Данная статистика была предложена Ш. Бозе (1924) для фотонов и развита А. Эйнштейном (1924) применительно к молекулам идеального газа , рассматриваемым как составные частицы из четного числа фермионов, напр. атомные ядра с четным суммарным числом протонов и нейтронов (дейтрон, ядро 4 Не и т.д.). К бозонам относятся также фононы в твердом теле и жидком 4 Не, экситоны в полупроводниках и диэлектриках . Волновая ф-ция системы симметрична относительно перестановки любой пары тождеств. частиц. Числа заполнения квантовых состояний ничем не ограничены, т.е. в одном состоянии может находиться любое число частиц. Среднее число частиц n i идеального газа бозонов, находящихся в состоянии с энергией Е i описывается ф-цией распределения Бозе-Эйнштейна:

n i ={exp[(E i -m )/kT]-1} -1 .

Статистика Больцмана представляет собой частный случай квантовой статистики, когда можно пренебречь квантовыми эффектами (высокие т-ры). В ней рассматривается распределение частиц идеального газа по импульсам и координатам в фазовом пространстве одной частицы, а не в фазовом пространстве всех частиц, как в распределениях Гиббса. В качестве миним. единицы объема фазового пространства, имеющего шесть измерений (три координаты и три проекции импульса частицы), в соответствии с квантовомех. соотношением неопределенностей , нельзя выбрать объем меньший, чем h 3 . Среднее число частиц n i идеального газа , находящихся в состоянии с энергией E i , описывается ф-цией распределения Больцмана:

n i =exp[(m -E i)/kT].

Для частиц, к-рые движутся по законам классич. механики во внеш. потенц. поле U(r), статистически равновесная ф-ция распределения f 1 (p,r) по импульсам p и координатам r частиц идеального газа имеет вид: f 1 (p,r) = A ехр{ - [р 2 /2m + U(r)]/kT}. Здесь р 2 /2т-кинетич. энергия молекул массой ш, постоянная А определяется из условия нормировки. Данное выражение часто наз. распределением Максвелла-Больцмана, а распределением Больцмана наз. ф-цию

n(r) = n 0 ехр[-U(r)]/kT],

где n(r) = т f 1 (p, r)dp - плотность числа частиц в точке r (n 0 -плотность числа частиц в отсутствие внеш. поля). Распределение Больцмана описывает распределение моле кул в поле тяготения (барометрич. ф-ла), молекул и высокодисперсных частиц в поле центробежных сил, электронов в невырожденных полупроводниках , а также используется для расчета распределения ионов в разбавл. р-рах электролитов (в объеме и на границе с электродом) и т. п. При U(r) = 0 из распределения Максвелла - Больц-мана следует распределение Максвелла, описывающее распределение по скоростям частиц, находящихся в ста-тистич. равновесии (Дж. Максвелл, 1859). Согласно этому распределению, вероятное число молекул в единице объема компоненты скоростей к-рых лежат в интервалах от u i до u i + du i (i = x, у, z), определяется ф-цией:

Распределение Максвелла не зависит от взаимод. между Частицами и справедливо не только для газов , но и для жидкостей (если для них возможно классич. описание), а также для броуновских частиц, взвешенных в жидкости и газе . Его используют для подсчета числа столкновений молекул газа между собой в ходе хим. р-ции и с атомами пов-сти.

Сумма по состояниям молекулы . Статистич. сумма идеального газа в канонич. ансамбле Гиббса выражается через сумму по состояниям одной молекулы Q 1:

где Е i - энергияi-го квантового уровня молекулы (i = О соответствует нулевому уровню молекулы), g i -статистич. вес i-го уровня. В общем случае отдельные виды движения электронов , атомов и групп атомов в молекуле , а также движение молекулы как целого взаимосвязаны, однако приближенно их можно рассматривать как независимые. Тогда сумма по состояниям молекулы м. б. представлена в виде произведения отдельных составляющих, связанных с по-ступат. движением (Q пост) и с внутримол. движениями (Q вн):

Q 1 = Q пост ·Q вн, Q пост = l (V/N),

где l = (2p mkТ/h 2) 3/2 . Для атомов Q вн представляет собой сумму по электронным и ядерным состояниям атома ; для молекул Q вн - сумма по электронным, ядерным, колебат. и вращат. состояниям. В области т-р от 10 до 10 3 К обычно используют приближенное описание, в к-ром каждый из указанных типов движения рассматривается независимо: Q вн = Q эл ·Q яд ·Q вращ ·Q кол /g , где g - число симметрии , равное числу тождество. конфигураций, возникающих при вращении молекулы , состоящей из одинаковых атомов или групп атомов .

Сумма по состояниям электронного движения Q эл равна статистич. весу Р т осн. электронного состояния молекулы . Во мн. случаях осн. уровень невырожден и отделен от ближайшего возбужденного уровня значит. энергией: (Р т = 1). Однако в ряде случаев, напр. для молекулы О 2 , Р т = з, в осн. состоянии момент кол-ва движения молекулы отличен от нуля и имеет место вырождение энергетических уровней , а энергии возбужденных состояний м. б. достаточно низкими. Сумма по состояниям Q яд, обусловленная вырождением ядерных спинов , равна:

где s i -спин ядра атома i, произведение беретсяпо всем атомам молекулы . Сумма по состояниям колебат. движения молекулы где v i -частоты нор мальных колебаний, n-число атомов в молекуле . Сумму по состояниям вращат. движений многоатомной молекулы с большими моментами инерции можно рассматривать классически [высокотемпературное приближение, T/q i 1, где q i = h 2 /8p 2 kI i (i = x, у, z), I t -главный момент инерции вращения вокруг оси i]: Q вр = (p T 3 /q x q y q z) 1/2 . Для линейных молекул с моментом инерции I статистич. сумма Q вр = T/q , где q = h 2 /8p 2 *kI.

При расчетах при т-рах выше 10 3 К необходимо учитывать ангармонизм колебаний атомов , эффекты взаимод. колебат. и вращат. степеней свободы (см. Нежесткие молекулы), а также мультиплетности электронных состояний, заселенности возбужденных уровней и т. д. При низких т-рах (ниже 10 К) необходимо учитывать квантовые эффекты (особенно для двухатомных молекул). Так, вращат. движение гетеро-ядерной молекулы АВ описывается по ф-ле:

l-номервращат. состояния, а для гомоядерных молекул А 2 (особенно для молекул водорода Н 2 , дейтерия D 2 , трития Т 2) ядерные и вращат. степени свободы взаимод. друг с другом: Q яд. вращ . Q яд ·Q вращ.

Знание суммы по состояниям молекулы позволяет рассчитать термодинамич. св-ва идеального газа и смеси идеальных газов , в т.ч. константы хим. равновесия , равновесную степень ионизации и т.п. Важное значение в теории абс. скоростей р-ций имеет возможность расчета константы равновесия процесса образования активир. комплекса (переходного состояния), к-рое представляется как модифицир. частица, одна из колебат. степеней свободы к-рой заменена степенью свободы поступат. движения.

Неидеальные системы. В реальных газах молекулы взаимод. друг с другом. В этом случае сумма по состояниям ансамбля не сводится к произведению сумм по состояниям отдельных молекул . Если считать, что межмол. взаимод. не влияют на внутр. состояния молекул , статистич. сумма системы в классич. приближении для газа , состоящего из N тождеств. частиц, имеет вид:

где

Здесь <2 N -конфигурац. интеграл, учитывающий взаимод. молекул . Наиб, часто потенц. энергия молекул U рассматривается в виде суммы парных потенциалов: U = =где U(r ij)- потенциал центр. сил, зависящий от расстояния r ij между молекулами i и j. Учитывают также многочастичные вклады в потенц. энергию, эффекты ориентации молекул и т.д. Необходимость расчета конфигурац. интеграла возникает при рассмотрении любых конденсир. фаз и границ раздела фаз. Точное решение задачи мн. тел практически невозможно, поэтому для расчета статистич. суммы и всех термодинамич. св-в, получаемых из статистич. суммы дифференцированием по соответствующим параметрам, используют разл. приближенные методы.

Согласно т. наз. методу групповых разложений, состояние системы рассматривается в виде совокупности комплексов (групп), состоящих из разного числа молекул , и конфигурац. интеграл распадается на совокупность групповых интегралов. Такой подход позволяет представить любую термодинамич. ф-цию реального газа в виде ряда по степеням плотности. Наиб. важное соотношение такого рода - вириальное ур-ние состояния.

Для теоретич. описания св-в плотных газов , жидкостей и твердых тел , р-ров неэлектролитов и электролитов и границ раздела в этих системах более удобным, чем прямой расчет статистич. суммы, является метод n-частичных ф-ций распределения. В нем вместо подсчета статистич. веса каждого состояния с фиксир. энергией используют соотношения между ф-циями распределения f n , к-рые характеризуют вероятность нахождения частиц одновременно в точках пространства с координатами r 1 ,..., r n ; при n = N f N = b т f(p, r)dp (здесь и ниже q i = r i). Одночастичная ф-ция f 1 (r 1) (n = 1) характеризует распределение плотности в-ва. Для твердого тела это периодич. ф-ция с максимумами в узлах кристаллич. структуры; для газов или жидкостей в отсутствие внеш. поля это постоянная величина, равная макроскопич. плотности в-ва р. Двухчастичная ф-ция распределения (п = 2) характеризует вероятность нахождения двух частиц в точках 1 и 2, она определяет т. наз. корреляционную ф-цию g(|r 1 - r 2 |) = f 2 (r 1 , r 2)/r 2 , характеризующую взаимную корреляцию в распределении частиц. Соответствующую опытную информацию дает рентгеновский структурный анализ .

Ф-ции распределения размерности n и n + 1 связаны бесконечной системой зацепляющихся интегродифференц. ур-ний Боголюбова-Борна-Грина-Кирквуда-Ивона, решение к-рых чрезвычайно сложно, поэтому эффекты корреляции между частицами учитывают введением разл. аппроксимаций, к-рые определяют, каким бразом ф-ция f n выражается через ф-ции меньшей размерности. Соотв. разработано неск. приближенных методов расчета ф-ций f n , а через них-всех термодинамич. характеристик рассматриваемой системы. Наиб. применение имеют приближения Перкус-Иевика и гиперцепное.

Решеточные модели конденсир. состояния нашли широкое применение при термодинамич. рассмотрении практически всех физ.-хим. задач. Весь объем системы разбивается на локальные области с характерным размером порядка размера молекулы u 0 . В общем случае в разных моделях размер локальной области м. б. как больше, так и меньше u 0 ; в большинстве случаев они совпадают. Переход к дискретному распределению молекул в пространстве существенно упрощает подсчет разл. конфигураций молекул . Решеточные модели учитывают взаимод. молекул друг с другом; энергия взаимод. описывается энергетич. параметрами. В ряде случаев решеточные модели допускают точные решения, что позволяет оценить характер используемых приближений. С их помощью возможно рассмотрение многочастичных и специфич. взаимод., ориентац. эффектов и т. п. Решеточные модели являются основными при изучении и проведении прикладных расчетов растворов неэлектролитов и полимеров , фазовых переходов , критических явлений , сильно неоднородных систем.

Численные методы определения термодинамич. св-в приобретают все большее значение по мере развития вычислит. техники. В методе Монте-Карло осуществляется прямой расчет многомерных интегралов, что позволяет непосредственно получить статистич. среднее наблюдаемой величины А(r1.....r N) по любому из статистич. ансамблей (напр., А - энергия системы). Так, в канонич. ансамбле термодинамич. среднее имеет вид:

Данный метод применим практически ко всем системам; получаемые с его помощью средние величины для ограниченных объемов (N = 10 2 -10 5) служат хорошим приближением для описания макроскопич. объектов и могут рассматриваться как точные результаты.

В методе мол. динамики эволюция состояния системы рассматривается с помощью численного интегрирования ур-ний Ньютона для движения каждой частицы (N = = 10 2 -10 5) при заданных потенциалах межчастичного взаимодействия. Равновесные характеристики системы получаются при усреднении по фазовым траекториям (по скоростям и координатам) на больших временах, после установления максвелловского распределения частиц по скоростям (т. наз. период термализации).

Ограничения в использовании численных методов в осн. определяются возможностями ЭВМ. Спец. вычислит. приемы позволяют обходить сложности, связанные с тем, что рассматривается не реальная система, а небольшой объем; это особенно важно при учете дальнодействующих потенциалов взаимод., анализе фазовых переходов и т.п.

Физическая кинетика - раздел статистич. физики, к-рый дает обоснование соотношениям термодинамики необратимых процессов , описывающим перенос энергии, импульса и массы, а также влияние на эти процессы внеш. полей. Кинетич. коэффициенты-макроскопич. характеристики сплошной среды, определяющие зависимости потоков физ. величин (теплоты, импульса, массы компонентов и др.) от вызывающих эти потоки градиентов т-ры, концентрации , гидродинамич. скорости и др. Необходимо различать коэффициенты Онсагера, входящие в ур-ния, связывающие потоки с термодинамич. силами (термодинамич. ур-ния движения), и коэффициенты переноса (диффузии , теплопроводности , вязкости и т. п.), входящие в ур-ния переноса. Первые м. б. выражены через вторые с помощью соотношений между макроскопич. характеристиками системы, поэтому в дальнейшем будут рассматриваться лишь коэф. переноса.

Для расчета макроскопич. коэф. переноса необходимо провести усреднение по вероятностям реализаций элементарных актов переноса с помощью неравновесной ф-ции распределения. Главная сложность заключается в том, что аналит. вид ф-ции распределения f(р, q, т) (т-время) неизвестен (в отличие от равновесного состояния системы, к-рое описывается с помощью ф-ций распределения Гиббса, получаемых при т : , ). Рассматривают n-частичные ф-ции распределения f n (r , q, т), к-рые получают из ф-ций f(р, q, т) усреднением по координатам и импульсам остальных (N - п) частиц:

Для них м. б. составлена система ур-ний, позволяющая описать произвольные неравновесные состояния. Решение этой системы ур-ний очень сложно. Как правило, в кинетич. теории газов и газообразных квазичастиц в твердом теле (фермионов и бозонов) используется лишь ур-ние для одно-частичной ф-ции распределения f 1 . В предположении об отсутствии корреляции между состояниями любых частиц (гипотеза мол. хаоса) получено т. наз. кинетич. ур-ние БоЛьцмана (Л. Больцман, 1872). Это ур-ние учитывает изменение ф-ции распределения частиц под действием внеш. силы F(r, т) и парных столкновений между частицами:

где f 1 (u, r, т) и -ф-ции распределения частиц до столкновения, f " 1 (u", r, т) и-ф-ции распределения после столкновения; u и-скорости частиц до столкновения, u" и -скорости тех же частиц после столкновения, и = |u -|-модуль относит. скорости сталкивающихся частиц, q - угол между относит. скоростью u - сталкивающихся частиц и линией, соединяющей их центры, s (u,q )dW -дифференц. эффективное сечение рассеяния частиц на телесный угол dW в лаб. системе координат, зависящее от закона взаимод. частиц. Для модели молекул в виде упругих жестких сфер, имеющих радиус R, принимается s = 4R 2 cosq . В рамках классич. механики дифференц. сечение выражается через параметры столкновения b и e (соотв. прицельное расстояние и азимутальный угол линии центров): s dW = bdbde , а молекулы рассматриваются как центры сил с потенциалом, зависящим от расстояния. Для квантовых газов выражение для дифференц. эффективного сечения получают на основе квантовой механики , с учетом влияния эффектов симметрии на вероятность столкновения.

Если система находится в статистич. равновесии , интеграл столкновений Stf равен нулю и решением кинетич. ур-ния Больцмана будет распределение Максвелла. Для неравновесных состояний решения кинетич. уравнения Больцмана обычно ищут в виде разложения в ряд ф-ции f 1 (u, r, т) по малым параметрам относительно ф-ции распределения Максвелла. В простейшем (релаксационном) приближении интеграл столкновений аппроксимируется как Stf газах с внутр. степенями свободы симметрии теплопроводность жидкости , можно использовать локально равновесную одночастичную ф-цию распределения с т-рой, хим. потенциалами и гидродинамич. скоростью, к-рые соответствуют рассматриваемому малому объему жидкости . К ней можно найти поправку, пропорциональную градиентам т-ры, гидродинамич. скорости и хим. потенциалам компонентов, и вычислить потоки импульсов, энергии и в-ва, а также обосновать ур-ния Навье-Стокса, теплопроводности и диффузии . В этом случае коэф. переноса оказываются пропорциональными пространственно-временным корреляц. ф-циям потоков энергии, импульса и в-ва каждого компонента.

Для описания процессов переноса в-ва в твердых телах и на границах раздела с твердым телом широко используется решеточная модель конденсир. фазы. Эволюция состояния системы описывается осн. кинетич. ур-нием (master equation) относительно ф-ции распределения P(q, т):

где P(q,т)= т f(p,q,т)du- ф-ция распределения, усредненная по импульсам (скоростям) всех N частиц, описывающая распределение частиц по узлам решеточной структуры (их число равно N y , N < N y), q- номер узла или его координата. В модели "решеточного газа " частица может находиться в узле (узел занят) или отсутствовать (узел свободен); W(q : q")-вероятность перехода системы в единицу времени из состояния q, описываемого полным набором координат частиц, в др. состояние q". Первая сумма описывает вклад всех процессов, в к-рых осуществляется переход в данное состояние q, вторая сумма-выход из этого состояния. В случае равновесного распределения частиц (т : , ) P(q) = exp[-H(q)/kT]/Q, где Q-статистич. сумма, H(q)-энергия системы в состоянии q. Вероятности перехода удовлетворяют детального равновесия принципу: W(q": q)exp[-H(q")/kT] = W(q : q")ехр[-H(q)/kТ]. На базе ур-ний для функций P(q,т) строят кинетич. ур-ния для n-частичных ф-ций распределения, к-рые получают путем усреднения по расположениям всех остальных (N - п) частиц. Для малых h кинетич. ур-ния м. б. решены аналитически или численно и с их помощью м. б. получены коэф. диффузии , самодиффузии, сдвиговой вязкости , подвижности и т.п. Такой подход применим к процессам переноса в-ва в моноатомных кристаллах релаксации системы к равновесному состоянию позволяет рассмотреть разл. переходные процессы при исследовании кинетики фазовых превращений, роста кристаллов , кинетики поверхностных р-ций и т.д. и определить их динамич. характеристики, в т. ч. и коэф. переноса.

Для расчета коэф. переноса в газообразных, жидких и твердых фазах, а также на границах раздела фаз активно используются разнообразные варианты метода мол. динамики, к-рый позволяет детально проследить за эволюцией системы от времен ~10 -15 с до ~10 -10 с (на временах порядка 10 -10 - 10 -9 с и более используются т. наз. ур-ния Ланжевена, это ур-ния Ньютона, содержащие в правой части стохастич. слагаемое).

Для систем с хим. р-циями на характер распределения частиц большое влияние оказывает соотношение между характерными временами переноса реагентов и их хим. превращения. Если скорость хим. превращения мала, распределение частиц не сильно отличается от случая, когда р-ция отсутствует. Если скорость р-ции велика, ее влияние на характер распределения частиц велико и использовать средние концентрации частиц (т.е. ф-ции распределения с n = 1), как это делается при использовании закона действующих масс , нельзя. Необходимо более детально описывать распределение реагентов с помощью ф-ций распределения f n с n > 1. Важное значение при описании реакц. потоков частиц на пов-сти и скоростей диффузионно-контролируемых реакций имеют граничные условия (см. Макрокинетика)., 2 изд., М., 1982; Берклеевский курс физики, пер. с англ., 3 изд., т. 5-Рейф Ф., Статистическая физика, М., 1986; Товбин Ю.К., Теория физико-химических процессов на границе газ-твердое тело, М., 1990. Ю.К. Товбин.

Раздел физики, посвящённый изучению св в макроскопич. тел, т. е. систем, состоящих из очень большого числа одинаковых ч ц (молекул, атомов, эл нов и т. д.), исходя из св в этих ч ц и вз ствий между ними. Изучением макроскопич. тел занимаются и др … Физическая энциклопедия

- (статистическая механика), раздел физики, изучающий свойства макроскопических тел (газов, жидкостей, твердых тел) как систем из очень большого (порядка числа Авогадро, т.е. 1023 моль 1) числа частиц (молекул, атомов, электронов). В статистической … Современная энциклопедия

- (статистическая механика) раздел физики, изучающий свойства макроскопических тел как систем из очень большого числа частиц (молекул, атомов, электронов). В статистической физике применяют статистические методы, основанные на теории вероятностей.… … Большой Энциклопедический словарь

Статистическая физика - (статистическая механика), раздел физики, изучающий свойства макроскопических тел (газов, жидкостей, твердых тел) как систем из очень большого (порядка числа Авогадро, т.е. 1023 моль 1) числа частиц (молекул, атомов, электронов). В… … Иллюстрированный энциклопедический словарь

Сущ., кол во синонимов: 2 статы (2) физика (55) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

СТАТИСТИЧЕСКАЯ ФИЗИКА - раздел теоретической физики, изучающий свойства сложных систем газов, жидкостей, твёрдых тел и их связь со свойствами отдельных частиц электронов, атомов и молекул, из которых эти системы состоят. Основная задача С. ф.: нахождение функций… … Большая политехническая энциклопедия

- (статистическая механика), раздел физики, изучающий свойства макроскопических тел как систем из очень большого числа частиц (молекул, атомов, электронов). В статистической физике применяют статистические методы, базирующиеся на теории… … Энциклопедический словарь

Раздел физики, задача которого выразить свойства макроскопических тел, т. е. систем, состоящих из очень большого числа одинаковых частиц (молекул, атомов, электронов и т.д.), через свойства этих частиц и взаимодействие между ними.… … Большая советская энциклопедия

статистическая физика - statistinė fizika statusas T sritis fizika atitikmenys: angl. statistical physics vok. statistische Physik, f rus. статистическая физика, f pranc. physique statistique, f … Fizikos terminų žodynas

- (статистическая механика), раздел физики, изучающий свойства макроскопич. тел как систем из очень большого числа частиц (молекул, атомов, электронов). В С. ф. применяют статистич. методы, базирующиеся на теории вероятностей. С. ф. разделщотла… … Естествознание. Энциклопедический словарь

Книги

  • Статистическая физика , Климонтович Ю.Л.. Данный курс отличается от существующих как по содержанию, так и по характеру изложения. Весь материал излагается на основе единого метода - теория неравновесного состояния служит стержнем…
  • Статистическая физика , Л. Д. Ландау, Е. М. Лифшиц. Издание 1964 года. Сохранность хорошая. В книге дано ясное изложение общих принципов статики и по возможности более полное изложение их многочисленных применений. Второе издание дополняет…

Термодинамика. Работы Майера, Джоуля, Гельмгольца позволили выработать так называемый. “закон сохранения сил” (понятия «сила» и «энергия» в то время еще строго не различались). Однако первая ясная формулировка этого закона была получена физиками Р. Клаузиусом и У. Томсоном (лордом Кельвином) на основе анализа исследования работы тепловой машины, которое провел С. Карно. Рассматривая превращения теплоты и работы макроскопических системах С. Карно фактически положил начало новой науке, которую Томсон впоследствии назвал термодинамикой. Термодинамика ограничивается изучением особенностей превращения тепловой формы движения в другие, не интересуясь вопросами микроскопического движения частиц, составляющих вещество.

Термодинамика, таким образом, рассматривает системы, между которыми возможен обмен энергией, без учета микроскопического строения тел, составляющих систему, и характеристик отдельных частиц. Различают термодинамику равновесных систем или систем, переходящих к равновесию (классическая, или равновесная термодинамика) и термодинамику неравновесных систем (неравновесная термодинамика). Классическая термодинамика чаще всего называется просто термодинамикой и именно она составляет основу так называемой Термодинамической Картины Мира (ТКМ), которая сформировалась к середине 19 в. Неравновесная термодинамика получила развитие во второй половине 20-го века и играет особую роль при рассмотрении биологических систем и феномена жизни в целом.

Таким образом, при исследовании тепловых явлений выделились два научных направления:

1. Термодинамика, изучающая тепловые процессы без учета молекулярного строения вещества;

2. Молекулярно-кинетическая теория (развитие кинетической теории вещества в противовес теории теплорода);

Молекулярно-кинетическая теория. В отличие от термодинамики молекулярно-кинетическая теория характеризуется рассмотрением различных макроскопических проявлений систем как результатов суммарного действия огромной совокупности хаотически движущихся молекул. Молекулярно-кинетическая теория использует статистический метод, интересуясь не движением отдельных молекул, а только средними величинами, которые характеризуют движение огромной совокупности частиц. Отсюда второе название молекулярно-кинетической теории – статистическая физика.

Первое начало термодинамики. Опираясь на работы Джоуля и Майера, Клаузнус впервые высказал мысль, сформировавшуюся впоследствии в первое начало термодинамики. Он сделал вывод, что всякое тело имеет внутреннюю энергию U . Клаузиус назвал ее теплом, содержащимся в теле, в отличие от “тепла Q, сообщенного телу”. Внутреннюю энергию можно увеличить двумя эквивалентными способами: проведя над телом механическую работу -А, или сообщая ему количество теплоты Q.



В 1860 г. У. Томсон окончательно заменив устаревший термин “сила” термином “энергия”, записывает первое начало термодинамики в следующей формулировке:

Количество теплоты, сообщенное газу, идет на увеличение внутренней энергии газа и совершение газом внешней работы (рис.1).

Для бесконечно малых изменений имеем

Первое начало термодинамики, или закон сохранения энергии, утверждает баланс энергии и работы. Его роль можно сравнить с ролью своеобразного «бухгалтера» при взаимопревращения различных видов энергии друг в друга.

Если процесс циклический, система возвращается в исходное состояние и U1 = U2 , a dU = 0. В этом случае все подведенное тепло идет на совершение внешней работы. Если при этом и Q = 0, то и А = 0, т.е. невозможен процесс, единственным результатом которого является производство работы без каких-либо изменений в других телах, т.е. работа «вечного двигателя» (perpetuum mobile).

Майер в своей работе составил таблицу всех рассмотренных им “сил” (энергий) природы и привел 25 случаев их превращений (тепло ® механическая работа ® электричество, химическая «сила» вещества ® теплота, электричество). Майер распространил положение о сохранении и превращении энергии и на живые организмы (поглощение пищи ® химические процессы ® тепловые и механические эффекты). Эти примеры впоследствии были подкреплены работами Гесса (1840 г.), в которых исследовалось превращение химической энергии в теплоту, а также Фарадея, Ленца и Джоуля, в результате которых был сформулирован закон Джоуля-Ленца (1845) о связи электрической и тепловой энергии Q = J2Rt.

Таким образом, постепенно, на протяжении более четырех десятилетий сформировался один из самых великих принципов современной науки, приведший к объединению самых различных явлений природы. Этот принцип заключается в следующем: Существует определенная величина, называемая энергией, которая не меняется ни при каких превращениях, происходящих в природе. Исключений из закона сохранения энергии не существует.

Контрольные вопросы

1. Почему исследование тепловых явлений и фазовых переходов выявило несостоятельность лапласовского детерминизма?

2. Что такое микропараметры, макропараметры при исследовании тепловых явлений?

3. С чем было связано изучение тепловых явлений и когда оно началось?

4. Назовите ученых, чьи труды легли в основу физики тепловых явлений.

5. Что такое консервативные силы? Диссипативные силы? Приведите примеры.

6. Для каких систем справедлив закон сохранения механической энергии?

7. Что такое потенциальная энергия? Только ли к механическим системам применимо понятие потенциальной энергии? Поясните.

8. Объясните кратко теорию теплорода.

9. Какие опыты, опровергающие теорию теплорода, были проведены Румфордом?

10. Почему теплоемкости газа в процессах при постоянном давлении (Ср) и при постоянном объеме (Сv) неодинаковы? Кто из ученых впервые обнаружил этот факт?

11. Что такое термодинамика? Что она изучает?

12. Что изучает молекулярно-кинетическая теория?

13. Что такое статистическая физика? Откуда такое название?

14. Сформулируйте первое начало термодинамики.

15. С чем (кем) можно образно сравнить первое начало термодинамики?

Литература

1. Дягилев Ф.М. Концепции современного естествознания. – М.: Изд. ИМПЭ, 1998.

2. Концепции современного естествознания./ под ред. проф. С.А. Самыгина, 2-е изд. – Ростов н/Д: «Феникс», 1999.

3. Дубнищева Т.Я.. Концепции современного естествознания. Новосибирск: Изд-во ЮКЭА, 1997.

4. Ремизов А.Н. Медицинская и биологическая физика. – М.: Высшая школа, 1999.