Что называется частотой звука единица измерения. Давление в ядерном заряде в момент ядерного взрыва. Частотный спектр звука и АЧХ

Звук - это упругие волны в среде (часто в воздухе), которые невидимы, но воспринимаемые человеческим ухом (волна воздействует на барабанную перепонку уха). Звуковая волна является продольной волной сжатия и разрежения.

Если создать вакуум, то будем ли мы различать звуки? Роберт Бойль в 1660 году поместил часы в стеклянный сосуд. Откачав воздух, он не услышал звука. Опыт доказывает, что для распространения звука необходима среда .

Звук может также распространятся в жидкой и твердой среде. Под водой хорошо слышны удары камней. Положим часы на один конец деревянной доски. Приложив ухо к другому концу, можно ясно услышать тиканье часов.


Звуковая волна распространяется через дерево

Источник звука - это обязательно колеблющиеся тела. Например, струна на гитаре в обычном состоянии не звучит, но стоит нам заставить ее совершать колебательные движения , как возникает звуковая волна.

Однако опыт показывает, что не всякое колеблющееся тело является источником звука. Например, не издает звук грузик, подвешенный на нити. Дело в том, что человеческое ухо воспринимает не все волны, а только те, которые создают тела, колеблющиеся с частотой от 16Гц до 20000Гц. Такие волны называются звуковыми . Колебания с частотой меньше 16Гц называется инфразвуком . Колебания с частотой больше 20000Гц называются ультразвуком .



Скорость звука

Звуковые волны распространяются не мгновенно, а с некоторой конечной скоростью (аналогично скорости равномерного движения).

Именно поэтому во время грозы мы сначала видим молнию, то есть свет (скорость света гораздо больше скорости звука), а затем доносится звук.


Скорость звука зависит от среды: в твердых телах и жидкостях скорость звука значительно больше, чем в воздухе. Это табличные измеренные постоянные . С увеличением температуры среды скорость звука возрастает, с уменьшением - убывает.

Звуки бывают разными. Для характеристики звука вводят специальные величины: громкость, высота и тембр звука.

Громкость звука зависит от амплитуды колебаний: чем больше амплитуда колебаний, тем громче звук. Кроме того, восприятие громкости звука нашим ухом зависит от частоты колебаний в звуковой волне. Более высокочастотные волны воспринимаются как более громкие.

Частота звуковой волны определяет высоту тона. Чем больше частота колебаний источника звука, тем выше издаваемый им звук. Человеческие голоса по высоте делят на несколько диапазонов.


Звуки от разных источников представляет собой совокупность гармонических колебаний разных частот. Составляющая наибольшего периода (наименьшей частоты) называется основным тоном. Остальные составляющие звука - обертонами. Набор этих составляющих создает окраску, тембр звука. Совокупность обертонов в голосах разных людей хоть немного, но отличается, это и определяет тембр конкретного голоса.

Эхо . Эхо образуется в результате отражения звука от различных преград - гор, леса, стен, больших зданий и т.п. Эхо возникает только в том случае, когда отраженный звук воспринимается раздельно от первоначально произнесенного звука. Если отражающих поверхностей много и они находятся на разных расстояниях от человека, то отраженные звуковые волны дойдут до него в разные моменты времени. В этом случае эхо будет многократным. Препятствие должно находится на расстоянии 11м от человека, чтобы можно было услышать эхо.

Отражение звука. Звук отражается от гладких поверхностей. Поэтому при использовании рупора звуковые волны не рассеиваются во все стороны, а образуют узконаправленный пучок, за счет чего мощность звука увеличивается, и он распространяется на большее расстояние.

Некоторые животные (например, летучая мышь, дельфин) издают ультразвуковые колебания, затем воспринимают отраженную волну от препятствий. Так они определяют местоположение и расстояние до окружающих предметов.

Эхолокация . Это способ определения местоположения тел по отраженным от них ультразвуковым сигналам. Широко применяется в мореплавании. На судах устанавливают гидролокаторы - приборы для распознавания подводных объектов и определения глубины и рельефа дна. На дне судна помещают излучатель и приемник звука. Излучатель дает короткие сигналы. Анализируя время задержки и направление возвращающихся сигналов, компьютер определяет положение и размер объекта отразившего звук.

Ультразвук используется для обнаружения и определения различных повреждений в деталях машин (пустоты, трещины и др.). Прибор, используемый для этой цели называется ультразвуковым дефектоскопом . На исследуемую деталь направляется поток коротких ультразвуковых сигналов, которые отражаются от находящихся внутри нее неоднородностей и, возвращаясь, попадают в приемник. В тех местах, где дефектов нет, сигналы проходят сквозь деталь без существенного отражения и не регистрируются приемником.

Ультразвук широко используется в медицине для постановки диагноза и лечения некоторых заболеваний. В отличие от рентгеновских лучей его волны не оказывают вредного влияния на ткани. Диагностические ультразвуковые исследования (УЗИ) позволяют без хирургического вмешательства распознать патологические изменения органов и тканей. Специальное устройство направляет ультразвуковые волны с частотой от 0,5 до 15МГц на определенную часть тела, они отражаются от исследуемого органа и компьютер выводит на экран его изображение.

Для инфразвука характерно малое поглощение в различных средах вследствие чего инфразвуковые волны в воздухе, воде и земной коре могут распространятся на очень далекие расстояния. Это явление находит практическое применение при определении мест сильных взрывов или положения стреляющего оружия. Распространение инфразвука на большие расстояния в море дает возможность предсказания стихийного бедствия - цунами. Медузы, ракообразные и др. способны воспринимать инфразвуки и задолго до наступления шторма чувствуют его приближение.

Занимаясь музыкой, бывает очень полезно представлять себе в целом, что такое звук и как происходит запись звука на компьютере. Имея такие знания, становится намного проще понять, что такое, например, компрессия или как появляется клиппинг. В музыке, как и почти в любом деле, зная основы, проще идти вперёд.

Что такое звук?

Звук - это физические колебания среды, распространяющиеся в виде волн. Мы улавливаем эти колебания и воспринимаем их как звук . Если же попытаться графически изобразить звуковую волну, мы получим, как это ни удивительно, волну .

Синусоидальная звуковая волна

Выше изображена синусоидальная звуковая волна, звучание которой можно услышать из аналоговых синтезаторов или из телефонной трубки стационарного телефона, если вы им ещё пользуетесь. Кстати, в телефоне звучит , говоря техническим, а не музыкальным языком.

Звук обладает тремя важными характеристиками, а именно: громкость, высота и тембр - это субъективные ощущения, но они имеют своё отражение в физическом мире в виде физических свойств звуковой волны.

Амплитуда

То что воспринимается нами как громкость - это сила колебаний или уровень звукового давления , который измеряется в (дБ).

Графически изображается волнами разной высоты:

Чем выше амплитуда (высота волны на графике), тем громче воспринимается звук, и наоборот, чем меньше амплитуда, тем тише звук. Конечно, на восприятие громкости влияет ещё и частота звука, но это особенности нашего восприятия.

Примеры различной громкости, в децибелах:

Звук Громкость (дБ) Эффект
Сельская местность вдали от дорог 25 дБ Почти не слышно
Шёпот 30 дБ Очень тихо
Офис в рабочее время 50-60 дБ Уровень шума остаётся комфортным до 60 дБ
Пылесос, фен для волос 70 дБ Назойливый; мешает говорить по телефону
Кухонный комбайн, блендер 85-90 дБ Начиная с громкости в 85 дБ при длительном (8 часов) прослушивании начинается повреждение слуха
Грузовик, бетономешалка, вагон метро 95-100 дБ Для звуков от 90 до 100 дБ рекомендуется воздействие не более 15 минут на незащищённое ухо
Бензопила, отбойный молоток 110 дБ Регулярное воздействие звуков громче 110 дБ на протяжении более 1 минуты вызывает риск необратимой потери слуха
Рок концерт 110-140 дБ Болевой порог начинается около 125 дБ

Частота

Когда мы говорим, что звук «выше» или «ниже», то понимаем о чём речь, но графически это отображается не высотой, а расстоянием и частотой:

Высота ноты (звука) — частота звуковой волны

чем меньше расстояние между звуковыми волнами, тем выше частота звука или, просто, выше звук.

Думаю, все знают, что человеческое ухо способно воспринимать звуки частотой приблизительно от 20 Гц до 20 кГц (в исключительных случаях - от 16 Гц до 22 кГц), а музыкальные звуки находятся в интервале от 16,352 Гц («до» субконтроктавы) до 7,902 кГц («си» пятой октавы).

Тембр

И последняя важная нам характеристика - тембр звука. Говоря словами, это то, как «окрашен» звук, а графически выглядит как различная комплексность, сложность звуковой волны. Вот, например, графическое отображение звуковых волн скрипки и рояля:

Тембр звука — комплексность (сложность) звуковой волны

Посложнее синусоиды, не правда ли?

Существует несколько способов записи звука: нотная запись, аналоговая запись и цифровая запись.

Нотная запись - это просто данные о частоте, длительности и громкости звуков, которые необходимо воспроизвести на каком-либо инструменте. В компьютерном мире есть аналог - MIDI данные. Но рассмотрение этого вопроса выходит за рамки данной статьи, разберём его подробно в другой раз.

Аналоговая запись - по сути своей запись физических колебаний как они есть на какой-либо носитель: виниловую пластинку или магнитную ленту. Тут сразу должно начаться обильное слюноотделение у любителей тёплого лампового звука, но мы не из таких и , что аналоговые приборы имеют сильную погрешность и принципиальные ограничения, это вносит искажения и ухудшает качество записи, а физические носители со временем изнашиваются, что ещё сильней снижает качество фонограммы, поэтому аналоговая запись сейчас ушла в прошлое.

Цифровая запись звука - технология, которая дала возможность любому попробовать себя звукоинженером или продюсером. Так как же она работает? Ведь компьютер может записывать только числа, а если быть точным, только нули и единицы, в которых кодируются другие цифры, буквы, изображения. Как в цифрах записать такие сложные данные как звук?

Решение довольно простое - нарезать звуковую волну маленькими кусочками, то есть преобразовать непрерывную функцию (звуковую волну) в дискретную. Этот процесс называется дискретизацией , не от слова «кретин», а от слова «дискретность» (лат. discretus - разделённый, прерывистый). Каждый такой маленький кусочек звуковой волны уже очень легко описать цифрами (уровень сигнала в определенный момент времени), что при цифровой записи и происходит. Этот процесс называется аналого-цифровым преобразованием (analog to digital conversion), а преобразующее устройство (микросхема), соответственно, - аналого-цифровым преобразователем (analog to digital convertor) или АЦП (ADC).

Вот пример отрывка звуковой волны длиной почти в пять миллисекунд райд-тарелки (ride cymbal):

Видите, она вся состоит из зубчиков? Это и есть дискретные маленькие кусочки, на которые нарезана звуковая волна, но при желании через эти зубчики-столбики можно провести непрерывную кривую линию, которая и будет изначальной звуковой волной. При воспроизведении так и происходит в устройстве (тоже микросхеме) под названием цифро-аналоговый преобразователь (digital to analog convertor) или ЦАП (DAC). АЦП и ЦАП являются основными деталями аудио-интерфейса и от их качества зависит его качество и возможности.

Частота дискретизации и битность

Я, наверное, уже утомил даже самых стойких читателей, но не отчаивайтесь, это часть статьи, ради которой она и затевалась.

У процесса преобразования аналогового сигнала в цифровой (и наоборот) есть два важных свойства - это частота дискретизации (она же частота семплирования или sample rate) и глубина дискретизации (битность).

Частота дискретизации - это частота, с которой звуковой сигнал режется на кусочки (семплы). Не повторите мою ошибку: с частотой звука частота дискретизации связана только через теорему Котельникова, которая говорит: для того, чтобы однозначно восстановить исходный сигнал, частота дискретизации должна более чем в два раза превышать наибольшую частоту в спектре сигнала. Таким образом используемая при записи CD и музыки частота дискретизации в 44,1 кГц покрывает
слышимый человеком диапазон частот.

Битность - это глубина дискретизации, измеряемая в битах, то есть это количество бит, используемое для записи амплитуды сигнала. При записи CD используется 16 бит, что достаточно для в 96 дБ, то есть мы сможем записать звук, у корого разница между самой тихой и самой громкой его частями составляет 96 дБ, что почти всегда достаточно для записи любой музыки. В студиях при записи обычно применяют 24-битную разрядность, что даёт динамический диапазон в 144 дБ, но поскольку 99% устройств, воспроизводящих звук (магнитофоны, плееры, звуковые карты, идущие в комлекте с компьютером) умеют обрабатывать только 16-разрядный звук, при рендеринге всё равно придётся потерять 48 дБ (144 минус 96) динамического диапазона, используя 16-битное разрешение.

Напоследок подсчитаем битрейт музыки на Audio CD:
16 бит x 44 100 семплов в секунду x 2 канала = 1 411 200 бит в секунду = 1 411,2 кбит/с.

Таким образом, одна секунда записи на Audio CD занимает 172 килобайта или 0,168 мегабайта.

Это всё, что я хотел рассказать про запись звука на компьютере.
Ну, или почти всё.

Последний раздел для хардкорных читатателей.

Dither

При рендеринге проектов в звуковых редакторах при выборе формата 44 100 kHz 16 bit иногда появляется галочка Dither. Что это такое?
Это подмешивание псевдослучайного сигнала. Едва ли вам стало легче от такой формулировки, но я сейчас объясню.

При аналого-цифровом преобразовании происходит округление амплитуды. То есть при 16-битной глубине дискретизации нам доступно 2 16 = 65 536 возможных вариантов уровня амплитуды. Но если амплитуда у звука в одном из семплов оказалась равной 34 целых и 478 тысячных, то нам придётся её округлить до 34.

Для малых уровней амплитуды входного сигнала такое округление несёт негативные последствия в виде искажений, с чем и борется dither .

Вот теперь точно всё. Спасибо за чтение!

Не забудьте написать комментарий и нажать на красивые кнопочки социальных сетей в низу статьи.

Звук представляет собой звуковые волны, которые вызывают колебания мельчайших частиц воздуха, других газов, а также жидких и твердых сред. Звук может возникать только там, где есть вещество, не важно, в каком агреатном состоянии оно находится. В условиях вакуума, где отсутствует какая-либо среда, звук не распространяется, потому что там отсутствуют частицы, которые и выступают распространителями звуковых волн. Например, в космосе. Звук может модифицироваться, видоизменяться, превращаясь в иные формы энергии. Так, звук, преобразованный в радиоволны или в электрическую энергию, можно передавать на расстояния и записывать на информационные носители.

Звуковая волна

Движения предметов и тел практически всегда становятся причиной колебаний окружающей среды. Не важно, вода это или воздух. В процессе этого частицы среды, которой передаются колебания тела, также начинают колебаться. Возникают звуковые волны. Причем движения осуществляются в направлениях вперед и назад, поступательно сменяя друг друга. Поэтому звуковая волна является продольной. Никогда в ней не возникает поперечного движения вверх и вниз.

Характеристики звуковых волн

Как и любое физическое явление, они имеют свои величины, при помощи которых можно описать свойства. Основные характеристики звуковой волны - это ее частота и амплитуда. Первая величина показывает, какое количество волн образуется за секунду. Вторая определяет силу волны. Низкочастотные звуки имеют низкие показатели частоты, и наоборот. Частота звука измеряется в Герцах, и если она превышает 20 000 Гц, то возникает ультразвук. Примеров низкочастотных и высокочастотных звуков в природе и окружающем человека мире достаточно. Щебетание соловья, раскаты грома, грохот горной реки и другие - это все разные звуковые частоты. Значение амплитуды волны напрямую зависит от того, насколько звук громок. Громкость же, в свою очередь, уменьшается по мере удаления от источника звука. Соответственно, и амплитуда тем меньше, чем дальше от эпицентра находится волна. Другими словами, амплитуда звуковой волны уменьшается при удалении от источника звука.

Скорость звука

Этот показатель звуковой волны находится в прямой зависимости от характера среды, в которой она распространяется. Значимую роль здесь играют и влажность, и температура воздуха. В средних погодных условиях скорость звука составляет приблизительно 340 метров в секунду. В физике существует такое понятие, как сверхзвуковая скорость, которая всегда по значению больше, чем скорость звука. С такой скоростью распространяются звуковые волны при движении самолета. Самолет движется со сверхзвуковой скоростью и даже обгоняет звуковые волны, создаваемые им. Вследствие давления, постепенно увеличивающегося позади самолета, образуется ударная звуковая волна. Интересна и мало кому известна единица измерения такой скорости. Называется она Мах. 1 Мах равен скорости звука. Если волна движется со скоростью 2 Маха, значит, она распространяется в два раза быстрее, чем скорость звука.

Шумы

В повседневной жизни человека присутствуют постоянные шумы. Измеряется уровень шума в децибелах. Движение автомобилей, ветер, шелест листвы, переплетение голосов людей и другие звуковые шумы являются нашими спутниками ежедневно. Но к таким шумам слуховой анализатор человека имеет возможность привыкать. Однако существуют и такие явления, с которыми даже приспособительные способности человеческого уха не могут справиться. Например, шум, превышающий 120 дБ, способен вызвать ощущение боли. Самое громкое животное - синий кит. Когда он издает звуки, его можно услышать на расстоянии более 800 километров.

Эхо

Как возникает эхо? Здесь все очень просто. Звуковая волна имеет способность отражаться от разных поверхностей: от воды, от скалы, от стен в пустом помещении. Эта волна возвращается к нам, поэтому мы слышим вторичный звук. Он не такой четкий, как первоначальный, поскольку некоторая энергия звуковой волны рассеивается при движении до преграды.

Эхолокация

Отражение звука используется в различных практических целях. Например, эхолокация. Она основана на том, что с помощью ультразвуковых волн можно определить расстояние до объекта, от которого эти волны отражаются. Расчеты осуществляются при измерении времени, за которое ульразвук доберется до места и вернется обратно. Способностью к эхолокации обладают многие животные. Например, летучие мыши, дельфины используют ее для поиска пищи. Другое применение эхолокация нашла в медицине. При исследованиях с помощью ультразвука образуется картинка внутренних органов человека. В основе такого метода находится то, что ультразвук, попадая в отличную от воздуха среду, возвращается обратно, формируя таким образом изображение.

Звуковые волны в музыке

Почему музыкальные инструменты издают те или иные звуки? Гитарные переборы, наигрыши пианино, низкие тона барабанов и труб, очаровывающий тонкий голосок флейты. Все эти и многие другие звуки возникают по причине колебаний воздуха или, другими словами, из-за появления звуковых волн. Но почему звучание музыкальных инструментов настолько разнообразное? Оказывается, это зависит от некоторых факторов. Первое - это форма инструмента, второе - материал, из которого он изготовлен.

Рассмотрим это на примере струнных инструментов. Они становятся источником звука, когда на струны воздействуют касанием. Вследствие этого они начинают производить колебания и посылать в окружающую среду разные звуки. Низкий звук какого-либо струнного инструмента обусловлен большей толщиной и длиной струны, а также слабостью ее натяжения. И наоборот, чем сильнее натянута струна, чем она тоньше и короче, тем более высокий звук получается в результате игры.

Действие микрофона

Оно основано на преобразовании энергии звуковой волны в электрическую. В прямой зависимости при этом находятся сила тока и характер звука. Внутри любого микрофона расположена тонкая пластина, выполненная из металла. При воздействии звуком она начинает совершать колебательные движения. Спираль, с которой соединена пластинка, также вибрирует, в результате чего возникает электрический ток. Почему он появляется? Это связано с тем, что в микрофоне также встроены магниты. При колебаниях спирали между его полюсами и образуется электрический ток, который идет по спирали и далее - на звуковую колонку (громкоговоритель) или к технике для записи на информационный носитель (на кассету, диск, компьютер). Кстати, аналогичное строение имеет микрофон в телефоне. Но как действуют микрофоны на стационарном и мобильном телефоне? Начальная фаза одинакова для них - звук человеческого голоса передает свои колебания на пластинку микрофона, далее все по описанному выше сценарию: спираль, которая при движении замыкает два полюса, создается ток. А что дальше? Со стационарным телефоном все более-менее понятно - как и в микрофоне, звук, преобразованный в электрический ток, бежит по проводам. А как же обстоит дело с сотовым телефоном или, например, с рацией? В этих случаях звук превращается в энергию радиоволн и попадает на спутник. Вот и все.

Явление резонанса

Иногда создаются такие условия, когда амплитуда колебаний физического тела резко возрастает. Это происходит вследствие сближения значений частоты вынужденных колебаний и собственной частоты колебаний предмета (тела). Резонанс может приносить как пользу, так и вред. Например, чтобы вызволить машину из ямки, ее заводят и толкают взад-вперед для того, чтобы вызвать резонанс и придать автомобилю инерцию. Но бывали и случаи негативного последствия резонанса. К примеру, в Петербурге приблизительно сто лет назад рухнул мост под синхронно шагающими солдатами.

Звук (звуковая волна ) –это упругая волна, воспринимаемая органом слуха человека и животных . Иначе говоря, звук представляет собой распространение колебаний плотности (или давления) упругой среды, возникающих при взаимодействии частиц среды друг с другом.

Атмосфера (воздух) является одной из упругих сред. Распространение звука в воздухе подчиняется общим законам распространения акустических волн в идеальных газах, а также имеет особенности, обусловленные непостоянством плотности, давления, температуры и влажности воздуха. Скорость звука определяется свойствами среды и вычисляется по формулам для скорости упругой волны.

Существуют искусственные и естественные источники звука. К искусственным относятся излучатели на основе:

Колебаний твёрдых тел (струны и деки музыкальных инструментов, диффузоры громкоговорителей, мембраны телефонов, пьезоэлектрические пластины);

Колебаний воздуха в ограниченном объёме (органные трубы., свистки);

Удара (клавиши рояля, колокол);

Электрического тока (электроакустические преобразователи).

К естественным источникам относятся:

Взрыв, обвал;

Обтекание препятствий потоком воздуха (обдувание ветром угла здания, гребня морской волны).

Также существуют искусственные и естественные приёмники звука:

Электроакустические преобразователи (микрофон в воздухе, гидрофон в воде, геофон в земной коре) и другие приборы;

Слуховой аппарат человека и животных.

При распространении звуковых волн возможны явления, характерные для волн любой природы:

Отражение от препятствия,

Преломление на границе двух сред,

Интерференция (сложение),

Дифракция (огибание препятствий),

Дисперсия (зависимость скорости звука в веществе от частоты звука);

Поглощение (уменьшение энергии и интенсивности звука в среде вследствие необратимого превращения энергии звука в теплоту).

      Объективные характеристики звука

Частота звука

Частота звука, слышимого человеком, лежит в пределах от 16 Гц до16 - 20 кГц . Упругие волны с частотой ниже слышимого диапазона называют инфразвуком (в т. ч. сотрясение), сболее высокой частотойультразвуком , а самые высокочастотные упругие волны –гиперзвуком .

Весь частотный диапазон звука можно разделить на три части (табл. 1.).

Шум имеет сплошной спектр частот (или длин волн) в области низкочастотного звука (табл. 1, 2). Сплошной спектр означает, что частоты может иметь любое значение из данного интервала.

Музыкальные , или тональные , звуки обладают линейчатым спектром частот в области среднечастотного и частично высокочастотного звука. Оставшуюся часть высокочастотного звука занимает свист. Линейчатый спектр означает, что музыкальные частоты имеют лишь строго определённые (дискретные) значения из указанного интервала.

Кроме того, интервал музыкальных частот делят на октавы. Октава – это интервал частот, заключённый между двумя граничными значениями, верхняя из которых вдвое больше нижней (табл. 3)

Общепринятые октавные полосы частот

Октавные полосы частот

min , Гц

max , Гц

ср , Гц

Примеры интервалов частот звука, создаваемого человеческим голосовым аппаратом и воспринимаемого человеческим слуховым аппаратом, приведены в табл.4.

Контральто, альт

Меццо-сопрано

Колоратурное сопрано

Примеры частотных диапазонов некоторых музыкальных инструментов приведены в таблице 5. Они охватывают не только звуковой диапазон, но и ультразвуковой.

Музыкальный инструмент

Частота, Гц

Саксофон

Животные, птицы и насекомые создают и воспринимают звук других частотных диапазонов, нежели человек (табл. 6).

В музыке каждую синусоидальную звуковую волну называют простым тоном, или тоном. Высота тона зависит от частоты: чем больше частота, тем выше тон. Основным тоном сложного музыкального звука называют тон, соответствующий наименьшей частоте в его спектре. Тоны, соответствующие остальным частотам, называются обертонами . Если обертоны кратны частоте основного тона, то обертоны называются гармоническими . Обертон с наименьшей частотой называется первой гармоникой, со следующей - второй и т.л.

Музыкальные звуки с одним и тем же основным тоном могут различаться тембром. Тембр зависит от состава обертонов, их частот и амплитуд, характера их нарастания в начале звучания и спада в конце.

Скорость звука

Для звука в различных средах справедливы общие формулы (22) – (25). При этом следует учесть, что формула (22) применима в случае сухого атмосферного воздуха и с учётом числовых значений коэффициента Пуассона, молярной массы и универсальной газовой постоянной может быть записана в виде:

Однако, реальный атмосферный воздух всегда имеет влажность, которая влияет на скорость звука. Это обусловлено тем, что коэффициент Пуассона зависит от отношения парциального давления водяного пара (p пар ) к атмосферному давлению (p ). Во влажном воздухе скорость звука определяют по формуле:

.

Из последнего уравнения видно, что скорость звука о влажном воздухе скорость звука немного больше, чем в сухом.

Численные оценки скорости звука, учитывающие влияние температур и влажности атмосферного воздуха, можно осуществлять по приближённой формуле:

Эти оценки показывают, что при распространении звука вдоль горизонтального направления (0 x ) с увеличением температуры на1 0 C скорость звука возрастает на0,6 м/с . Под влиянием водяного пара с парциальным давлением не более10 Па скорость звука возрастает менее чем на0,5 м/с . А в целом, при максимально возможном парциальном давлении водяного пара у поверхности Земли, скорость звука увеличивается не более чем1 м/с .

Звуковое давление

При отсутствии звука атмосфера (воздух) является невозмущённой средой и имеет статическое атмосферное давление (
).

При распространении звуковых волн к этому статическому давлению добавляется дополнительное переменное давление, обусловленное сгущениями и разрежениями воздуха. В случае плоских волн можно записать:

где p зв, max – амплитуда звукового давления, - циклическая частота звука,k– волновое число. Следовательно, атмосферное давление в фиксированной точке в данный момент времени становится равным сумме этих давлений:

Звуковое давление – это переменное давление, равное разности мгновенного фактического атмосферного давления в данной точке при прохождении звуковой волны и статического атмосферного давления при отсутствии звука :

Звуковое давление в течение периода колебаний меняет своё значение и знак.

Звуковое давление практически всегда намного меньше атмосферного

Оно становится велико и соизмеримо с атмосферным при возникновении ударных волн во время мощных взрывов или при прохождении реактивного самолета.

Единицами измерения звукового давления служат следующие:

- паскаль в СИ
,

- бар в СГС
,

- миллиметр ртутного столба ,

- атмосфера .

На практике приборы измеряют не мгновенное значение звукового давления, а так называемое эффективное (илидействующее )звуковое давление . Оно равноквадратному корню из среднего значения квадрата мгновенного звукового давления в данной точке пространства в данный момент времени

(44)

и поэтому называется также среднеквадратическим звуковым давлением . Подставляя выражение (39) в формулу (40), получим:

. (45)

Звуковое сопротивление

Звуковым (акустическим) сопротивлением называют отношение амплитуд звукового давления и колебательной скорости частиц среды:

. (46)

Физический смысл звукового сопротивления : оно численно равно звуковому давлению, вызывающему колебания частиц среды с единичной скоростью:

Единица измерения звукового сопротивления в СИ – паскаль-секунда на метр :

.

В случае плоской волны скорость колебаний частиц равна

.

Тогда формула (46) примет вид:

. (46*)

Существует также и другое определение звукового сопротивления, как произведение плотности среды и скорости звука в этой среде:

. (47)

Тогда его физический смысл состоит в том, что оно численно равно плотности среды, в которой распространяется упругая волна с единичной скоростью:

.

Кроме акустического сопротивления в акустике используется понятие механическое сопротивление (R м ). Механическое сопротивление представляет собой отношение амплитуд периодической силы и колебательной скорости частиц среды:

, (48)

где S – площадь поверхности излучателя звука. Механическое сопротивление измеряется вньютон-секундах на метр :

.

Энергия и сила звука

Звуковая волна характеризуется теми же энергетическими величинами, что и упругая волна.

Каждый объем воздуха, в котором распространяются звуковые волны, обладает энергией, складывающейся из кинетической энергии колеблющихся частиц и потенциальной энергии упругой деформации среды (см. формулу (29)).

Интенсивность звука принято называть силой звука . Она равна

. (49)

Поэтому физический смысл силы звука аналогичен смыслу плотности потока энергии: численно равна среднему значению энергии, которая переносится волной за единицу времени через поперечную поверхность единичной площади.

Единица измерения силы звука – ватт на квадратный метр:

.

Сила звука пропорциональна квадрату эффективного звукового давления и обратно пропорциональна звуковому (акустическому) давлению:

, (50)

или, учитывая выражения (45),

, (51)

где R ак акустическое сопротивление.

Звук можно также характеризовать звуковой мощностью. Звуковая мощность – это общее количество звуковой энергии, излучаемой источником в течение определённого времени через замкнутую поверхность, окружающую источник звука :

, (52)

или, учитывая формулу (49),

. (52*)

Звуковая мощность, как и любая другая, измеряется в ваттах :

.

Звуковые волны в воздухе - чередующиеся области сжатия и разрежения.

Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении её характеристик от равновесных значений с последующим возвращением к исходному значению. Для звуковых колебаний такой характеристикой является давление в точке среды, а её отклонение - звуковым давлением .

Если произвести резкое смещение частиц упругой среды в одном месте, например, с помощью поршня, то в этом месте увеличится давление. Благодаря упругим связям частиц давление передаётся на соседние частицы, которые, в свою очередь, воздействуют на следующие, и область повышенного давления как бы перемещается в упругой среде. За областью повышенного давления следует область пониженного давления, и, таким образом, образуется ряд чередующихся областей сжатия и разрежения, распространяющихся в среде в виде волны. Каждая частица упругой среды в этом случае будет совершать колебательные движения.

В жидких и газообразных средах, где отсутствуют значительные колебания плотности, акустические волны имеют продольный характер, то есть направление колебания частиц совпадает с направлением перемещения волны. В твёрдых телах, помимо продольных деформаций, возникают также упругие деформации сдвига, обусловливающие возбуждение поперечных (сдвиговых) волн; в этом случае частицы совершают колебания перпендикулярно направлению распространения волны. Скорость распространения продольных волн значительно больше скорости распространения сдвиговых волн.

Физические параметры звука

Генерация звука

Обычно для генерации звука применяются колеблющиеся тела различной природы, вызывающие колебания окружающего воздуха. Примером такой генерации может служить использование голосовых связок , динамиков или камертона . Большинство музыкальных инструментов основано на том же принципе. Исключением являются духовые инструменты , в которых звук генерируется за счёт взаимодействия потока воздуха с неоднородностями в инструменте. Для создания когерентного звука применяются так называемые звуковые или фононные лазеры .

Ультразвуковая диагностика

Ультразвук - упругие звуковые колебания высокой частоты . Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16 Гц-20 кГц ; колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости).

Распространение ультразвука

Распространение ультразвука - это процесс перемещения в пространстве и во времени возмущений, имеющих место в звуковой волне.

Звуковая волна распространяется в веществе, находящемся в газообразном, жидком или твёрдом состоянии, в том же направлении, в котором происходит смещение частиц этого вещества, то есть она вызывает деформацию среды. Деформация заключается в том, что происходит последовательное разряжение и сжатие определённых объёмов среды, причём расстояние между двумя соседними областями соответствует длине ультразвуковой волны. Чем больше удельное акустическое сопротивление среды, тем больше степень сжатия и разряжения среды при данной амплитуде колебаний.

Частицы среды, участвующие в передаче энергии волны, колеблются около положения своего равновесия. Скорость, с которой частицы колеблются около среднего положения равновесия называется колебательной скоростью. Колебательная скорость частиц изменяется согласно уравнению:

,

где V - величина колебательной скорости;

  • U - амплитуда колебательной скорости;
  • f - частота ультразвука;
  • t - время;
  • G - разность фаз между колебательной скоростью частиц и переменным акустическим давлением.

Амплитуда колебательной скорости характеризует максимальную скорость, с которой частицы среды движутся в процессе колебаний, и определяется частотой колебаний и амплитудой смещения частиц среды.

,

Дифракция, интерференция

При распространении ультразвуковых волн возможны явления дифракции, интерференции и отражения.

Дифракция (огибание волнами препятствий) имеет место тогда, когда длина ультразвуковой волны сравнима (или больше) с размерами находящегося на пути препятствия. Если препятствие по сравнению с длиной акустической волны велико, то явления дифракции нет.

При одновременном движении в среде нескольких ультразвуковых волн в каждой определённой точке среды происходит суперпозиция (наложение) этих волн. Наложение волн одинаковой частоты друг на друга называется интерференцией. Если в процессе прохождения через объект ультразвуковые волны пересекаются, то в определённых точках среды наблюдается усиление или ослабление колебаний. При этом состояние точки среды, где происходит взаимодействие, зависит от соотношения фаз ультразвуковых колебаний в данной точке. Если ультразвуковые волны достигают определённого участка среды в одинаковых фазах (синфазно), то смещения частиц имеют одинаковые знаки и интерференция в таких условиях приводит к увеличению амплитуды колебаний. Если же волны приходят к точке среды в противофазе, то смещение частиц будет разнонаправленным, что приводит к уменьшению амплитуды колебаний.

Поглощение ультразвуковых волн

Если среда, в которой происходит распространение ультразвука, обладает вязкостью и теплопроводностью или в ней имеются другие процессы внутреннего трения, то при распространении волны происходит поглощение звука, то есть по мере удаления от источника амплитуда ультразвуковых колебаний становится меньше, так же как и энергия, которую они несут. Среда, в которой распространяется ультразвук, вступает во взаимодействие с проходящей через него энергией и часть её поглощает. Преобладающая часть поглощенной энергии преобразуется в тепло, меньшая часть вызывает в передающем веществе необратимые структурные изменения. Поглощение является результатом трения частиц друг об друга, в различных средах оно различно. Поглощение зависит также от частоты ультразвуковых колебаний. Теоретически, поглощение пропорционально квадрату частоты.

Величину поглощения можно характеризовать коэффициентом поглощения, который показывает, как изменяется интенсивность ультразвука в облучаемой среде. С ростом частоты он увеличивается. Интенсивность ультразвуковых колебаний в среде уменьшается по экспоненциальному закону. Этот процесс обусловлен внутренним трением, теплопроводностью поглощающей среды и её структурой. Его ориентировочно характеризует величина полупоглощающего слоя, которая показывает на какой глубине интенсивность колебаний уменьшается в два раза (точнее в 2,718 раза или на 63 %). По Пальману при частоте, равной 0,8 МГц средние величины полупоглощающего слоя для некоторых тканей таковы: жировая ткань - 6,8 см; мышечная - 3,6 см; жировая и мышечная ткани вместе - 4,9 см. С увеличением частоты ультразвука величина полупоглощающего слоя уменьшается. Так при частоте, равной 2,4 МГц, интенсивность ультразвука, проходящего через жировую и мышечную ткани, уменьшается в два раза на глубине 1,5 см.

Кроме того, возможно аномальное поглощение энергии ультразвуковых колебаний в некоторых диапазонах частот - это зависит от особенностей молекулярного строения данной ткани. Известно, что 2/3 энергии ультразвука затухает на молекулярном уровне и 1/3 на уровне микроскопических тканевых структур.

Глубина проникновения ультразвуковых волн

Под глубиной проникновения ультразвука понимают глубину, при которой интенсивность уменьшается на половину. Эта величина обратно пропорциональна поглощению: чем сильнее среда поглощает ультразвук, тем меньше расстояние, на котором интенсивность ультразвука ослабляется наполовину.

Рассеяние ультразвуковых волн

Если в среде имеются неоднородности, то происходит рассеяние звука, которое может существенно изменить простую картину распространения ультразвука и, в конечном счете, также вызвать затухание волны в первоначальном направлении распространения.

Преломление ультразвуковых волн

Так как акустическое сопротивление мягких тканей человека ненамного отличается от сопротивления воды, можно предполагать, что на границе раздела сред (эпидермис - дерма - фасция - мышца) будет наблюдаться преломление ультразвуковых волн.

Отражение ультразвуковых волн

На явлении отражения основана ультразвуковая диагностика. Отражение происходит в приграничных областях кожи и жира, жира и мышц, мышц и костей. Если ультразвук при распространении наталкивается на препятствие, то происходит отражение, если препятствие мало, то ультразвук его как бы обтекает. Неоднородности организма не вызывают значительных отклонений, так как по сравнению с длиной волны (2 мм) их размерами (0,1-0,2 мм) можно пренебречь. Если ультразвук на своём пути наталкивается на органы, размеры которых больше длины волны, то происходит преломление и отражение ультразвука. Наиболее сильное отражение наблюдается на границах кость - окружающие её ткани и ткани - воздух. У воздуха малая плотность и наблюдается практически полное отражение ультразвука. Отражение ультразвуковых волн наблюдается на границе мышца - надкостница - кость, на поверхности полых органов.

Бегущие и стоячие ультразвуковые волны

Если при распространении ультразвуковых волн в среде не происходит их отражения, образуются бегущие волны. В результате потерь энергии колебательные движения частиц среды постепенно затухают, и чем дальше расположены частицы от излучающей поверхности, тем меньше амплитуда их колебаний. Если же на пути распространения ультразвуковых волн имеются ткани с разными удельными акустическими сопротивлениями, то в той или иной степени происходит отражение ультразвуковых волн от пограничного раздела. Наложение падающих и отражающихся ультразвуковых волн может приводить к возникновению стоячих волн. Для возникновения стоячих волн расстояние от поверхности излучателя до отражающей поверхности должно быть кратным половине длины волны.

Инфразвук

Инфразвук, образующийся в море, называют одной из возможных причин нахождения судов, покинутых экипажем

Опыты и демонстрации

Для демонстрации стоячих волн звука служит Труба Рубенса .

Различие в скоростях распространения звука наглядно, когда вдыхают вместо воздуха гелий, и говорят что-либо, выдыхая им, - голос становится выше. Если же газ - гексафторид серы SF 6 , то голос звучит ниже. Связано это с тем, что газы примерно одинаково хорошо сжимаемы, поэтому в обладающем очень низкой плотностью гелии по сравнению с воздухом происходит увеличение скорости звука, и понижение - в гексафториде серы с очень высокой для газов плотностью, размеры же ротового резонатора человека остаются неизменными, в итоге меняется резонансная частота, так как чем выше скорость звука, тем выше резонансная частота при остальных неизменных условиях.

О скорости звука в воде можно визуально получить представление в опыте дифракции света на ультразвуке в воде . В воде по сравнению с воздухом, скорость звука выше, так как даже при существенно более высокой плотности воды (что должно было бы привести к падению скорости звука), вода настолько плохо сжимаема, что в итоге в ней скорость звука оказывается всё-равно в несколько раз выше.

Примечания

Литература

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.
  • Радзишевский Александр Юрьевич. Основы аналогового и цифрового звука. - М .: Вильямс, 2006. - С. 288. -