Звук звуковые волны. Поглощение ультразвуковых волн. Распространение звуковых волн, фаза и противофаза

Февраль 18, 2016

Мир домашних развлечений довольно разнообразен и может включать в себя: просмотр кино на хорошей домашней кинотеатральной системе; увлекательный и захватывающий игровой процесс или прослушивание музыкальных композиций. Как правило, каждый находит что-то своё в этой области, или сочетает всё сразу. Но какими бы не были цели человека по организации своего досуга и в какую бы крайность не ударялись - все эти звенья прочно связаны одним простым и понятным словом - "звук". Действительно, во всех перечисленных случаях нас будет вести за ручку звуковое сопровождение. Но вопрос этот не так прост и тривиален, особенно в тех случаях, когда появляется желание добиться качественного звучания в помещении или любых других условиях. Для этого не всегда обязательно покупать дорогостоящие hi-fi или hi-end компоненты (хотя будет весьма кстати), а бывает достаточным хорошее знание физической теории, которая способна устранить большинство проблем, возникающих у всех, кто задался целью получить озвучку высокого качества.

Далее будет рассмотрена теория звука и акустики с точки зрения физики. В данном случае я постараюсь сделать это максимально доступно для понимания любого человека, который, возможно, далёк от знания физических законов или формул, но тем не менее страстно грезит воплощением мечты создания совершенной акустической системы. Я не берусь утверждать, что для достижения хороших результатов в этой области в домашних условиях (или в автомобиле, например) необходимо знать эти теории досканально, однако понимание основ позволит избежать множество глупых и абсурдных ошибок, а так же позволит достичь максимального эффекта звучания от системы любого уровня.

Общая теория звука и музыкальная терминология

Что же такое звук ? Это ощущение, которое воспринимает слуховой орган "ухо" (само по себе явление существует и без участия «уха» в процессе, но так проще для понимания), возникающее при возбуждении барабанной перепонки звуковой волной. Ухо в данном случае выступает в роли "приёмника" звуковых волн различной частоты.
Звуковая волна же представляет собой по сути последовательный ряд уплотнений и разряжений среды (чаще всего воздушной среды в обычных условиях) различной частоты. Природа звуковых волн колебательная, вызываемая и производимая вибрацией любых тел. Возникновение и распространение классической звуковой волны возможно в трёх упругих средах: газообразных, жидких и твёрдых. При возникновении звуковой волны в одном из этих типов пространства неизбежно возникают некоторые изменения в самой среде, например, изменение плотности или давления воздуха, перемещение частиц воздушных масс и т.д.

Поскольку звуковая волна имеет колебательную природу, то у неё имеется такая характеристика, как частота. Частота измеряется в герцах (в честь немецкого физика Генриха Рудольфа Герца), и обозначает количество колебаний за период времени, равный одной секунде. Т.е. например, частота 20 Гц обозначает цикл в 20 колебаний за одну секунду. От частоты звука зависит и субъективное понятие его высоты. Чем больше звуковых колебаний совершается за секунду, тем «выше» кажется звучание. У звуковой волны так же имеется ещё одна важнейшая характеристика, имеющая название - длина волны. Длиной волны принято считать расстояние, которое проходит звук определённой частоты за период, равный одной секунде. Для примера, длина волны самого низкого звука в слышимом диапазоне для человека частотой 20 Гц составляет 16,5 метров, а длина волны самого высокого звука 20000 Гц составляет 1,7 сантиметра.

Человеческое ухо устроено таким образом, что способно воспринимать волны только в ограниченном диапазоне, примерно 20 Гц - 20000 Гц (зависит от особенностей конкретного человека, кто-то способен слышать чуть больше, кто-то меньше). Таким образом, это не означает, что звуков ниже или выше этих частот не существует, просто человеческим ухом они не воспринимаются, выходя за границу слышимого диапазона. Звук выше слышимого диапазона называется ультразвуком , звук ниже слышимого диапазона называется инфразвуком . Некоторые животные способны воспринимать ультра и инфра звуки, некоторые даже используют этот диапазон для ориентирования в пространстве (летучие мыши, дельфины). В случае, если звук проходит через среду, которая напрямую не соприкасается с органом слуха человека, то такой звук может быть не слышим или сильно ослабленным в последствии.

В музыкальной терминологии звука существуют такие важные обозначения, как октава, тон и обертон звука. Октава означает интервал, в котором соотношение частот между звуками составляет 1 к 2. Октава обычно очень хорошо различима на слух, в то время как звуки в пределах этого интервала могут быть очень похожими друг на друга. Октавой также можно назвать звук, который делает вдвое больше колебаний, чем другой звук, в одинаковый временной период. Например, частота 800 Гц, есть ни что иное, как более высокая октава 400 Гц, а частота 400 Гц в свою очередь является следующей октавой звука частотой 200 Гц. Октава в свою очередь состоит из тонов и обертонов. Переменные колебания в гармонической звуковой волне одной частоты воспринимаются человеческим ухом как музыкальный тон . Колебания высокой частоты можно интерпретировать как звуки высокого тона, колебания низкой частоты – как звуки низкого тона. Человеческое ухо способно чётко отличать звуки с разницей в один тон (в диапазоне до 4000 Гц). Несмотря на это, в музыке используется крайне малое число тонов. Объясняется это из соображений принципа гармонической созвучности, всё основано на принципе октав.

Рассмотрим теорию музыкальных тонов на примере струны, натянутой определённым образом. Такая струна, в зависимости от силы натяжения, будет иметь "настройку" на какую-то одну конкретную частоту. При воздействии на эту струну чем-либо с одной определённой силой, что вызовет её колебания, стабильно будет наблюдаться какой-то один определенный тон звука, мы услышим искомую частоту настройки. Этот звук называется основным тоном. За основной тон в музыкальной сфере официально принята частота ноты "ля" первой октавы, равная 440 Гц. Однако, большинство музыкальных инструментов никогда не воспроизводят одни чистые основные тона, их неизбежно сопровождают призвуки, именуемые обертонами . Тут уместно вспомнить важное определение музыкальной акустики, понятие тембра звука. Тембр - это особенность музыкальных звуков, которые придают музыкальным инструментам и голосам их неповторимую узнаваемую специфику звучания, даже если сравнивать звуки одинаковой высоты и громкости. Тембр каждого музыкального инструмента зависит от распределения звуковой энергии по обертонам в момент появления звука.

Обертоны формируют специфическую окраску основного тона, по которой мы легко можем определить и узнать конкретный инструмент, а так же чётко отличить его звучание от другого инструмента. Обертоны бывают двух типов: гармонические и негармонические. Гармонические обертоны по определению кратны частоте основного тона. Напротив, если обертоны не кратны и заметно отклоняются от величин, то они называются негармоническими . В музыке практически исключается оперирование некратными обертонами, поэтому термин сводится к понятию "обертон", подразумевая под собой гармонический. У некоторых инструментов, например фортепиано, основной тон даже не успевает сформироваться, за короткий промежуток происходит нарастание звуковой энергии обертонов, а затем так же стремительно происходит спад. Многие инструменты создают так называемый эффект "переходного тона", когда энергия определённых обертонов максимальна в определённый момент времени, обычно в самом начале, но потом резко меняется и переходит к другим обертонам. Частотный диапазон каждого инструмента можно рассмотреть отдельно и он обычно ограничивается частотами основных тонов, который способен воспроизводить данный конкретный инструмент.

В теории звука также присутствует такое понятие как ШУМ. Шум - это любой звук, которой создаётся совокупностью несогласованных между собой источников. Всем хорошо знаком шум листвы деревьев, колышимой ветром и т.д.

От чего зависит громкость звука? Очевидно, что подобное явление напрямую зависит от количества энергии, переносимой звуковой волной. Для определения количественных показателей громкости, существует понятие - интенсивность звука. Интенсивность звука определяется как поток энергии, прошедший через какую-то площадь пространства (например, см2) за единицу времени (например, за секунду). При обычном разговоре интенсивность составляет примерно 9 или 10 Вт/см2. Человеческое ухо способно воспринимать звуки достаточно широкого диапазона чувствительности, при этом восприимчивость частот неоднородна в пределах звукового спектра. Так наилучшим образом воспринимается диапазон частот 1000 Гц - 4000 Гц, который наиболее широко охватывает человеческую речь.

Поскольку звуки столь сильно различаются по интенсивности, удобнее рассматривать её как логарифмическую величину и измерять в децибелах (в честь шотландского учёного Александра Грэма Белла). Нижний порог слуховой чувствительности человеческого уха составляет 0 Дб, верхний 120 Дб, он же ещё называется "болевой порог". Верхняя граница чувствительности так же воспринимается человеческим ухом не одинаково, а зависит от конкретной частоты. Звуки низких частот должны обладать гораздо бОльшей интенсивностью, чем высокие, чтобы вызвать болевой порог. Например, болевой порог на низкой частоте 31,5 Гц наступает при уровне силы звука 135 дБ, когда на частоте 2000 Гц ощущение боли появится при уже при 112 дБ. Имеется также понятие звукового давления, которое фактически расширяет привычное объяснение распространение звуковой волны в воздухе. Звуковое давление - это переменное избыточное давление, возникающее в упругой среде в результате прохождения через неё звуковой волны.

Волновая природа звука

Чтобы лучше понять систему возникновения звуковой волны, представим классический динамик, находящийся в трубе, наполненной воздухом. Если динамик совершит резкое движение вперёд, то воздух, находящийся в непосредственной близости диффузора на мгновение сжимается. После этого воздух расширится, толкая тем самым сжатую воздушную область вдоль по трубе.
Вот это волновое движение и будет впоследствии звуком, когда достигнет слухового органа и "возбудит" барабанную перепонку. При возникновении звуковой волны в газе создаётся избыточное давление, избыточная плотность и происходит перемещение частиц с постоянной скоростью. Про звуковые волны важно помнить то обстоятельство, что вещество не перемещается вместе со звуковой волной, а возникает лишь временное возмущение воздушных масс.

Если представить поршень, подвешенный в свободном пространстве на пружине и совершающий повторяющиеся движения "вперёд-назад", то такие колебания будут называться гармоническими или синусоидальными (если представить волну в виде графика, то получим в этом случае чистейшую синусойду с повторяющимися спадами и подъёмами). Если представить динамик в трубе (как и в примере, описанном выше), совершающий гармонические колебания, то в момент движения динамика "вперёд" получается известный уже эффект сжатия воздуха, а при движении динамика "назад" обратный эффект разряжения. В этом случае по трубе будет распространяться волна чередующихся сжатий и разрежений. Расстояние вдоль трубы между соседними максимумами или минимумами (фазами) будет называться длиной волны . Если частицы колеблются параллельно направлению распространения волны, то волна называется продольной . Если же они колеблются перпендикулярно направлению распространения, то волна называется поперечной . Обычно звуковые волны в газах и жидкостях – продольные, в твердых же телах возможно возникновение волн обоих типов. Поперечные волны в твердых телах возникают благодаря сопротивлению к изменению формы. Основная разница между этими двумя типами волн заключается в том, что поперечная волна обладает свойством поляризации (колебания происходят в определенной плоскости), а продольная – нет.

Скорость звука

Скорость звука напрямую зависит от характеристик среды, в которой он распространяется. Она определяется (зависима) двумя свойствами среды: упругостью и плотностью материала. Скорость звука в твёрдых телах соответственно напрямую зависит от типа материала и его свойств. Скорость в газовых средах зависит только от одного типа деформации среды: сжатие-разрежение. Изменение давления в звуковой волне происходит без теплообмена с окружающими частицами и носит название адиабатическое.
Скорость звука в газе зависит в основном от температуры - возрастает при повышении температуры и падает при понижении. Так же скорость звука в газообразной среде зависит от размеров и массы самих молекул газа, - чем масса и размер частиц меньше, тем "проводимость" волны больше и больше соответственно скорость.

В жидкой и твёрдой средах принцип распространения и скорость звука аналогичны тому, как волна распространяется в воздухе: путём сжатия-разряжения. Но в данных средах, помимо той же зависимости от температуры, достаточно важное значение имеет плотность среды и её состав/структура. Чем меньше плотность вещества, тем скорость звука выше и наоборот. Зависимость же от состава среды сложнее и определяется в каждом конкретном случае с учётом расположения и взаимодействия молекул/атомов.

Скорость звука в воздухе при t, °C 20: 343 м/с
Скорость звука в дистиллированной воде при t, °C 20: 1481 м/с
Скорость звука в стали при t, °C 20: 5000 м/с

Стоячие волны и интерференция

Когда динамик создаёт звуковые волны в ограниченном пространстве неизбежно возникает эффект отражения волн от границ. В результате этого чаще всего возникает эффект интерференции - когда две или более звуковых волн накладываются друг на друга. Особыми случаями явления интерференции являются образование: 1) Биений волн или 2) Стоячих волн. Биения волн - это случай, когда происходит сложение волн с близкими частотами и амплитудой. Картина возникновения биений: когда две похожие по частоте волны накладываются друг на друга. В какой-то момент времени при таком наложении, амплитудные пики могут совпадать "по фазе", а также могут совпадать и спады по "противофазе". Именно так и характеризуются биения звука. Важно помнить, что в отличие от стоячих волн, фазовые совпадения пиков происходят не постоянно, а через какие-то временные промежутки. На слух такая картина биений различается достаточно чётко, и слышится как периодическое нарастание и убывание громкости соответственно. Механизм возникновения этого эффекта предельно прост: в момент совпадения пиков громкость нарастает, в момент совпадения спадов громкость уменьшается.

Стоячие волны возникают в случае наложения двух волн одинаковой амлитуды, фазы и частоты, когда при "встрече" таких волн одна движется в прямом, а другая – в обратном направлении. В участке пространства (где образовалась стоячая волна) возникает картина наложения двух частотных амплитуд, с чередованием максимумов (т.н. пучностей) и минимумов (т.н. узлов). При возникновении этого явления крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения. В отличие от бегущих волн, в стоячей волне отсутствует перенос энергии вследствие того, что образующие эту волну прямая и обратная волны переносят энергию в равных количествах и в прямом и в противоположном направлениях. Для наглядного понимания возникновения стоячей волны, представим пример из домашней акустики. Допустим, у нас есть напольные акустические системы в некотором ограниченном пространстве (комнате). Заставив их играть какую-нибудь композицию с большим количеством баса, попробуем изменить местоположение слушателя в помещении. Таким образом слушатель, попав в зону минимума (вычитания) стоячей волны ощутит эффект того, что баса стало очень мало, а если слушатель попадает в зону максимума (сложения) частот, то получается обратный эффект существенного увеличения басовой области. При этом эффект наблюдается во всех октавах базовой частоты. Например, если базовая частота составляет 440 Гц, то явление "сложения" или "вычитания" будет наблюдаться также на частотах 880 Гц, 1760 Гц, 3520 Гц и т.д.

Явление резонанса

У большинства твёрдых тел имеется собственная частота резонанса. Понять этот эффект достаточно просто на примере обычной трубы, открытой только с одного конца. Представим ситуацию, что с другого конца трубы подсоединяется динамик, который может играть какую-то одну постоянную частоту, её также впоследствии можно менять. Так вот, у трубы имеется собственная частота резонанса, говоря простым языком - это частота, на которой труба "резонирует" или издаёт свой собственный звук. Если частота динамика (в результате регулировки) совпадёт с частотой резонанса трубы, то возникнет эффект увеличения громкости в несколько раз. Это происходит потому, что громкоговоритель возбуждает колебания воздушного столба в трубе со значительной амплитудой до тех пор, пока не найдётся та самая «резонансная частота» и произойдёт эффект сложения. Возникшее явление можно описать следующим образом: труба в этом примере "помогает" динамику, резонируя на конкретной частоте, их усилия складываются и "выливаются" в слышимый громкий эффект. На примере музыкальных инструментов легко прослеживается это явление, поскольку в конструкции большинства присутствуют элементы, называемые резонаторами. Нетрудно догадаться, что служит цели усилить определённую частоту или музыкальный тон. Для примера: корпус гитары с резонатором ввиде отверстия, сопрягаемого с объёмом; Конструкция трубки у флейты (и все трубы вообще); Циллиндрическая форма корпуса барабана, который сам по себе является резонатором определённой частоты.

Частотный спектр звука и АЧХ

Поскольку на практике практически не встречаются волны одной частоты, то возникает необходимость разложения всего звукового спектра слышимого диапазона на обертоны или гармоники. Для этих целей существуют графики, которые отображают зависимость относительной энергии звуковых колебаний от частоты. Такой график называется графиком частотного спектра звука. Частотный спектр звука бывает двух типов: дискретный и непрерывный. Дискретный график спектра отображает частоты по отдельности, разделённые пустыми промежутками. В непрерывном спектре присутствуют сразу все звуковые частоты.
В случае с музыкой или акустикой чаще всего используется обычный график Амплитудно-Частотой Характеристики (сокращённо "АЧХ"). На таком графике представлена зависимость амплитуды звуковых колебаний от частоты на протяжении всего спектра частот (20 Гц - 20 кГц). Глядя на такой график легко понять, например, сильные или слабые стороны конкретного динамика или акустической системы в целом, наиболее сильные участки энергетической отдачи, частотные спады и подъёмы, затухания, а так же проследить крутизну спада.

Распространение звуковых волн, фаза и противофаза

Процесс распространения звуковых волн происходит во всех направлениях от источника. Простейший пример для понимания этого явления: камешек, брошенный в воду.
От места, куда упал камень, начинают расходиться волны по поверхности воды во всех направлениях. Однако, представим ситуацию с использованием динамика в неком объёме, допустим закрытом ящике, который подключён к усилителю и воспроизводит какой-то музыкальный сигнал. Несложно заметить (особенно при условии, если подать мощный НЧ сигнал, например бас-бочку), что динамик совершает стремительное движение "вперёд", а потом такое же стремительное движение "назад". Остаётся понять, что когда динамик совершает движение вперёд, он излучает звуковую волну, которую мы слышим впоследствии. А вот что происходит, когда динамик совершает движение назад? А происходит парадоксально тоже самое, динамик совершает тот же звук, только распространяется он в нашем примере всецело в пределах объёма ящика, не выходя за его пределы (ящик закрыт). В целом, на приведённом выше примере можно наблюдать достаточно много интересных физических явлений, наиболее значимым из которых является понятие фазы.

Звуковая волна, которую динамик, находясь в объёме, излучает в направлении слушателя - находится "в фазе". Обратная же волна, которая уходит в объём ящика, будет соответственно противофазной. Остаётся только понять, что подразумевают эти понятия? Фаза сигнала – это уровень звукового давления в текущий момент времени в какой-то точке пространства. Фазу проще всего понять на примере воспроизведения музыкального материала обычной напольной стерео-парой домашних акустических систем. Представим, что две такие напольные колонки установлены в неком помещении и играют. Обе акустические системы в этом случае воспроизводят синхронный сигнал переменного звукового давления, притом звуковое давление одной колонки складывается со звуковым давлением другой колонки. Происходит подобный эффект за счёт синхронности воспроизведения сигнала левой и правой АС соответственно, другими словами, пики и спады волн, излучаемых левыми и правыми динамиками совпадают.

А теперь представим, что давления звука по-прежнему меняются одинаковым образом (не претерпели изменений), но только теперь противоположно друг другу. Подобное может произойти, если подключить одну акустическую систему из двух в обратной полярности ("+" кабель от усилителя к "-" клемме акустической системе, и "-" кабель от усилителя к "+" клемме акустической системы). В этом случае противоположный по направлению сигнал вызовет разницу давлений, которую можно представить в виде чисел следующим образом: левая акустическая система будет создавать давление "1 Па", а правая акустическая система будет создавать давление "минус 1 Па". В результате, суммарная громкость звука в точке размещения слушателя будет равна нулю. Это явление называется противофазой. Если рассматривать пример более детально для понимания, то получается, что два динамика, играющие "в фазе" - создают одинаковые области уплотнения и разряжения воздуха, чем фактически помогают друг другу. В случае же с идеализированной противофазой, область уплотнения воздушного пространства, созданная одним динамиком, будет сопровождаться областью разряжения воздушного пространства, созданной вторым динамиком. Выглядит это примерно, как явление взаимного синхронного гашения волн. Правда, на практике падения громкости до нуля не происходит, и мы услышим сильно искажённый и ослабленный звук.

Самым доступным образом можно описать это явление так: два сигнала с одинаковыми колебаниями (частотой), но сдвинутые по времени. Ввиду этого, удобнее представить эти явления смещения на примере обычных круглых стрелочных часов. Представим, что на стене висит несколько одинаковых круглых часов. Когда секундные стрелки этих часов бегут синхронно, на одних часах 30 секунд и на других 30, то это пример сигнала, который находится в фазе. Если же секундные стрелки бегут со смещением, но скорость по-прежнему одинакова, например, на одних часах 30 секунд, а на других 24 секунды, то это и есть классический пример смещения (сдвига) по фазе. Таким же образом фаза измеряется в градусах, в пределах виртуальной окружности. В этом случае, при смещении сигналов относительно друг друга на 180 градусов (половина периода), и получается классическая противофаза. Нередко на практике возникают незначительные смещения по фазе, которые так же можно определить в градусах и успешно устранить.

Волны бывают плоские и сферические. Плоский волновой фронт распространяется только в одном направлении и редко встречается на практике. Сферический волновой фронт представляет собой волны простого типа, которые исходят из одной точки и распространяется во всех направлениях. Звуковые волны обладают свойством дифракции , т.е. способностью огибать препятствия и объекты. Степень огибания зависит от отношения длины звуковой волны к размерам препятствия или отверстия. Дифракция возникает и в случае, когда на пути звука оказывается какое-либо препятствие. В этом случае возможны два варианта развития событий: 1) Если размеры препятствия намного больше длины волны, то звук отражается или поглощается (в зависимости от степени поглощения материала, толщины препятствия и т.д.), а позади препятствия формируется зона "акустической тени". 2) Если же размеры препятствия сравнимы с длиной волны или даже меньше её, тогда звук дифрагирует в какой-то мере во всех направлениях. Если звуковая волна при движении в одной среде попадает на границу раздела с другой средой (например воздушная среда с твёрдой средой), то может возникнуть три варианта развития событий: 1) волна отразится от поверхности раздела 2) волна может пройти в другую среду без изменения направления 3) волна может пройти в другую среду с изменением направления на границе, это называется "преломление волны".

Отношением избыточного давления звуковой волны к колебательной объёмной скорости называется волновое сопротивление. Говоря простыми словами, волновым сопротивлением среды можно назвать способность поглощать звуковые волны или "сопротивляться" им. Коэффициенты отражения и прохождения напрямую зависят от соотношения волновых сопротивлений двух сред. Волновое сопротивление в газовой среде гораздо ниже, чем в воде или твёрдых телах. Поэтому если звуковая волна в воздухе падает на твердый объект или на поверхность глубокой воды, то звук либо отражается от поверхности, либо поглощается в значительной мере. Зависит это от толщины поверхности (воды или твёрдого тела), на которую падает искомая звуковая волна. При низкой толщине твёрдой или жидкой среды, звуковые волны практически полностью "проходят", и наоборот, при большой толщине среды волны чаще отражается. В случае отражения звуковых волн, происходит этот процесс по хорошо известному физическому закону: "Угол падения равен углу отражения". В этом случае, когда волна из среды с меньшей плотностью попадает на границу со средой большей плотности - происходит явление рефракции . Оно заключается в изгибе (преломлении) звуковой волны после "встречи" с препятствием, и обязательно сопровождается изменением скорости. Рефракция зависит также от температуры среды, в которой происходит отражение.

В процессе распространения звуковых волн в пространстве неизбежно происходит снижение их интенсивности, можно сказать затухание волн и ослабление звука. На практике столкнуться с подобным эффектом достаточно просто: например, если два человека встанут в поле на некотором близком расстоянии (метр и ближе) и начнут что-то говорить друг другу. Если впоследствии увеличивать расстояние между людьми (если они начнут отдаляться друг от друга), тот же самый уровень разговорной громкости будет становиться всё менее и менее слышимым. Подобный пример наглядно демонстрирует явление снижения интенсивности звуковых волн. Почему это происходит? Причиной тому различные процессы теплообмена, молекулярного взаимодействия и внутреннего трения звуковых волн. Наиболее часто на практике происходит превращение звуковой энергии в тепловую. Подобные процессы неизбежно возникают в любой из 3-ёх сред распространения звука и их можно охарактеризовать как поглощение звуковых волн .

Интенсивность и степень поглощения звуковых волн зависит от многих факторов, таких как: давление и температура среды. Также поглощение зависит от конкретной частоты звука. При распространении звуковой волны в жидкостях или газах возникает эффект трения между разными частицами, которое называется вязкостью. В результате этого трения на молекулярном уровне и происходит процесс превращения волны из звуковой в тепловую. Другими словами, чем выше теплопроводность среды, тем меньше степень поглощения волн. Поглощение звука в газовых средах зависит ещё и от давления (атмосферное давление меняется с повышением высоты относительно уровня моря). Что касательно зависимости степени поглощения от частоты звука, то принимая во внимание вышеназванные зависимости вязкости и теплопроводности, поглощение звука тем выше, чем выше его частота. Для примера, при нормальной температуре и давлении, в воздухе поглощение волны частотой 5000 Гц составляет 3 Дб/км, а поглощение волны частотой 50000 Гц составит уже 300 Дб/м.

В твёрдых средах сохраняются все вышеназванные зависимости (теплопроводность и вязкость), однако к этому добавляется ещё несколько условий. Они связаны с молекулярной структурой твёрдых материалов, которая может быть разной, со своими неоднородностями. В зависимости от этого внутреннего твёрдого молекулярного строения, поглощение звуковых волн в данном случае может быть различным, и зависит от типа конкретного материала. При прохождении звука через твёрдое тело, волна претерпевает ряд преобразований и искажений, что чаще всего приводит к рассеиванию и поглощению звуковой энергии. На молекулярном уровне может возникнуть эффект дислокаций, когда звуковая волна вызывает смещение атомных плоскостей, которые затем возвращаются в исходное положение. Либо же, движение дислокаций приводит к столкновению с перпендикулярными им дислокациями или дефектами кристаллического строения, что вызывает их торможение и как следствие некоторое поглощение звуковой волны. Однако, звуковая волна может и резонировать с данными дефектами, что приведет к искажению исходной волны. Энергия звуковой волны в момент взаимодействия с элементами молекулярной структуры материала рассеивается в результате процессов внутреннего трения.

В я постараюсь разобрать особенности слухового восприятия человека и некоторые тонкости и особенности распространения звука.


Для начала заглянем в словарь и посмотрим там определения этих слов.

Звук — всё что слышит ухо, что доходит до слуха. Или более развёрнуто — то, что слышится, воспринимается слухом: физическое явление, вызываемое колебательными движениями частиц воздуха или другой среды. Звук, в широком смысле - колебательное движение частиц упругой среды, распространяющееся в виде волн в газообразной, жидкой или твёрдой средах.

Шум — это звуки, слившиеся в нестройное (обычно громкое) звучание. Или подробнее — беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры.

Вибрация — механические колебания упругого тела; дрожание. Слово произошло от латинского «Vibratio » — колебание, дрожание.

Изучением звуков занимается наука под названием АКУСТИКА. Акустика является одним из направлений физики (механики), исследующих упругие колебания и волны от самых низких (условно от 0 Гц) до высоких частот.

Человеческое ухо воспринимает определённый диапазон колебаний — как правило, от 16 до 20 000 колебаний в секунду. Одно колебание в секунду называется Герцем и сокращённо обозначается Гц . Колебания большей частоты называют ультразвуком, меньшей — инфразвуком.


Характеристики звука:
длина волны (период, Т) и амплитуда (А)

Поскольку звук это волна, то она характеризуется двумя основными величинами: длина волны (период колебания) и амплитуда. Амплитуда — максимальное значение смещения или изменения переменной величины от среднего значения при колебательном или волновом движении. Обратная периоду величина называется частотой (Гц). Сам же звук также характеризуется скоростью распространения, которая зависит от среды, в которой распространяется упругое колебание. Например:

  • скорость звука в воздухе = 331 м/с (при температуре 0 °C и давлении 101325 Па);
  • скорость звука в чистой воде = 1 348 м/с ;
  • скорость звука в солёной воде = 1 532,3 м/с (при температуре 24°C, солёности 35 промилле и нулевой глубине).


  • Связь слышимости звука с давлением,
    частотой и громкостью

    Как мы уже говорили, человек может воспринимать в идеале звук частотой от 16 до 20000 Гц. Однако сама частота звука не даёт нам возможности оценить насколько он безопасен для человека. Частота звука говорит о теоретической возможности услышать подобный звук, а вот практически услышим мы его или нет зависит от амплитуды. Логарифм амплитуды измеряется в децибелах (дБ). Децибел — это относительная величина, показывающая насколько увеличилась или уменьшилась громкость звука.

    Громкость — это кажущаяся сила звука, которая измеряется в децибелах. Зависимость громкости от уровня звукового давления (и интенсивности звука) является сугубо нелинейной кривой, она имеет логарифмический характер. При увеличении уровня звукового давления на 10 дБ громкость звука возрастёт в 2 раза.

    С какими же уровнями громкости мы с Вами сталкиваемся в нашей жизни?

    Звук

    Громкость, дБ

    Тишина (специальная камера)

    Тихий шёпот, тиканье наручных часов

    Шелест листьев, тиканье часов, норма для жилых помещений

    Сельская местность вдали от дорог, библиотека

    Тихая жилая территория, парк, тихий разговор

    Разговор средней громкости, тихая улица, тихий офис

    Нормальный разговор в 1м, норма для офисов

    Улица с интенсивным движением, телефон

    Громкий будильник, шум грузового автомобиля или мотоцикла

    Громкий крик, отбойный молоток, грузовой вагон на расстоянии 7м

    Поезд метро, фен, кузнечный цех, очень шумный завод

    Рок-музыка, крики ребёнка, вертолёт, трактор на расстоянии 1м

    Болевой порог, близкие раскаты грома, вувузела на расстоянии 1м

    Травма внутреннего уха, максимальная громкось на рок-концерте

    Контузия, травмы, возможен разрыв барабанной перепонки

    Шок, травмы, разрыв барабанной перепонки

    Возможен разрыв лёгких, возможна смерть

    Макс. давление воздушной ударной волны при взрыве тринитротолуола

    Максимальное давление воздушной ударной волны при ядерном взрыве

    Давление в ядерном заряде в момент ядерного взрыва


    Шумы в наших домах (жилых помещениях) могут возникать по разным причинам. В зависимости от источника шума их подразделают на ударный, воздушный, структурный и акустический.


    Виды шумов (звуков):

  • Ударный шум возникает, когда конструкция помещения принимает удар и рождаемые при этом колебания передаются на стены или перекрытия. Ударный шум возникает при ударах о пол тяжелых предметов, перемещение мебели, звук шагов, удары по стене. По конструкциям звуковые колебания могут распространяться достаточно далеко, т.к. они передаются на все смежные стены, потолки и полы.
  • Воздушный шум распространяется по воздуху, но стены и перекрытия поглощают воздушные звуковые колебания не достаточно хорошо. Способность поглощать звуки стенами и перекрытиями зависит от того материала из которого они состоят. Чем массивней перегородки, тем большим звукоизоляционным эффектом они обладают. В помещениях воздушным шумом чаще всего являются громкие голоса, громкая музыка, лай собак.
  • Структурный шум возникает при передаче вибраций трубами, шахтами вентиляции, и другими элементами коммуникаций. Некоторые элементы коммуникаций могут передавать звуки на большие расстояния. Известно, что стук по батареям могут слышать очень многие соседи.
  • Акустический шум чаще всего возникает в необустроенных помещениях и проявляется в виде эха.
  • В результате взаимодействия ветра с различными сооружениями, если скорости потока очень велики, а поперечные размеры тел в потоке малы, образуются ультразвуковые колебания, а если скорости потока малы и поперечные размеры велики – инфразвуки. Например, при обтекании стволов деревьев, телеграфных столбов, металлических ферм, снастей кораблей, последние будут испускать инфразвуки.

    В действующих СанПиН 2.1.2.2801-10 «Изменения и дополнения №1 к СанПиН 2.1.2.2645-10 «Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях» приведены следующие нормативы для жилых помещений:

    Допустимые уровни шума в жилых помещениях

    Наименование помещений, территорий

    Время суток

    Уровни звукового давления, дБ, в октавных частотах
    со средне-геометрическими частотами, Гц

    Жилые комнаты квартир

    7 - 23 ч.

    23 - 7 ч.

    Территории, непосредственно прилегающие к жилым домам

    7 - 23 ч.

    23 - 7 ч.

    Допустимые уровни инфразвука в жилых помещениях

    Занимаясь музыкой, бывает очень полезно представлять себе в целом, что такое звук и как происходит запись звука на компьютере. Имея такие знания, становится намного проще понять, что такое, например, компрессия или как появляется клиппинг. В музыке, как и почти в любом деле, зная основы, проще идти вперёд.

    Что такое звук?

    Звук - это физические колебания среды, распространяющиеся в виде волн. Мы улавливаем эти колебания и воспринимаем их как звук . Если же попытаться графически изобразить звуковую волну, мы получим, как это ни удивительно, волну .

    Синусоидальная звуковая волна

    Выше изображена синусоидальная звуковая волна, звучание которой можно услышать из аналоговых синтезаторов или из телефонной трубки стационарного телефона, если вы им ещё пользуетесь. Кстати, в телефоне звучит , говоря техническим, а не музыкальным языком.

    Звук обладает тремя важными характеристиками, а именно: громкость, высота и тембр - это субъективные ощущения, но они имеют своё отражение в физическом мире в виде физических свойств звуковой волны.

    Амплитуда

    То что воспринимается нами как громкость - это сила колебаний или уровень звукового давления , который измеряется в (дБ).

    Графически изображается волнами разной высоты:

    Чем выше амплитуда (высота волны на графике), тем громче воспринимается звук, и наоборот, чем меньше амплитуда, тем тише звук. Конечно, на восприятие громкости влияет ещё и частота звука, но это особенности нашего восприятия.

    Примеры различной громкости, в децибелах:

    Звук Громкость (дБ) Эффект
    Сельская местность вдали от дорог 25 дБ Почти не слышно
    Шёпот 30 дБ Очень тихо
    Офис в рабочее время 50-60 дБ Уровень шума остаётся комфортным до 60 дБ
    Пылесос, фен для волос 70 дБ Назойливый; мешает говорить по телефону
    Кухонный комбайн, блендер 85-90 дБ Начиная с громкости в 85 дБ при длительном (8 часов) прослушивании начинается повреждение слуха
    Грузовик, бетономешалка, вагон метро 95-100 дБ Для звуков от 90 до 100 дБ рекомендуется воздействие не более 15 минут на незащищённое ухо
    Бензопила, отбойный молоток 110 дБ Регулярное воздействие звуков громче 110 дБ на протяжении более 1 минуты вызывает риск необратимой потери слуха
    Рок концерт 110-140 дБ Болевой порог начинается около 125 дБ

    Частота

    Когда мы говорим, что звук «выше» или «ниже», то понимаем о чём речь, но графически это отображается не высотой, а расстоянием и частотой:

    Высота ноты (звука) — частота звуковой волны

    чем меньше расстояние между звуковыми волнами, тем выше частота звука или, просто, выше звук.

    Думаю, все знают, что человеческое ухо способно воспринимать звуки частотой приблизительно от 20 Гц до 20 кГц (в исключительных случаях - от 16 Гц до 22 кГц), а музыкальные звуки находятся в интервале от 16,352 Гц («до» субконтроктавы) до 7,902 кГц («си» пятой октавы).

    Тембр

    И последняя важная нам характеристика - тембр звука. Говоря словами, это то, как «окрашен» звук, а графически выглядит как различная комплексность, сложность звуковой волны. Вот, например, графическое отображение звуковых волн скрипки и рояля:

    Тембр звука — комплексность (сложность) звуковой волны

    Посложнее синусоиды, не правда ли?

    Существует несколько способов записи звука: нотная запись, аналоговая запись и цифровая запись.

    Нотная запись - это просто данные о частоте, длительности и громкости звуков, которые необходимо воспроизвести на каком-либо инструменте. В компьютерном мире есть аналог - MIDI данные. Но рассмотрение этого вопроса выходит за рамки данной статьи, разберём его подробно в другой раз.

    Аналоговая запись - по сути своей запись физических колебаний как они есть на какой-либо носитель: виниловую пластинку или магнитную ленту. Тут сразу должно начаться обильное слюноотделение у любителей тёплого лампового звука, но мы не из таких и , что аналоговые приборы имеют сильную погрешность и принципиальные ограничения, это вносит искажения и ухудшает качество записи, а физические носители со временем изнашиваются, что ещё сильней снижает качество фонограммы, поэтому аналоговая запись сейчас ушла в прошлое.

    Цифровая запись звука - технология, которая дала возможность любому попробовать себя звукоинженером или продюсером. Так как же она работает? Ведь компьютер может записывать только числа, а если быть точным, только нули и единицы, в которых кодируются другие цифры, буквы, изображения. Как в цифрах записать такие сложные данные как звук?

    Решение довольно простое - нарезать звуковую волну маленькими кусочками, то есть преобразовать непрерывную функцию (звуковую волну) в дискретную. Этот процесс называется дискретизацией , не от слова «кретин», а от слова «дискретность» (лат. discretus - разделённый, прерывистый). Каждый такой маленький кусочек звуковой волны уже очень легко описать цифрами (уровень сигнала в определенный момент времени), что при цифровой записи и происходит. Этот процесс называется аналого-цифровым преобразованием (analog to digital conversion), а преобразующее устройство (микросхема), соответственно, - аналого-цифровым преобразователем (analog to digital convertor) или АЦП (ADC).

    Вот пример отрывка звуковой волны длиной почти в пять миллисекунд райд-тарелки (ride cymbal):

    Видите, она вся состоит из зубчиков? Это и есть дискретные маленькие кусочки, на которые нарезана звуковая волна, но при желании через эти зубчики-столбики можно провести непрерывную кривую линию, которая и будет изначальной звуковой волной. При воспроизведении так и происходит в устройстве (тоже микросхеме) под названием цифро-аналоговый преобразователь (digital to analog convertor) или ЦАП (DAC). АЦП и ЦАП являются основными деталями аудио-интерфейса и от их качества зависит его качество и возможности.

    Частота дискретизации и битность

    Я, наверное, уже утомил даже самых стойких читателей, но не отчаивайтесь, это часть статьи, ради которой она и затевалась.

    У процесса преобразования аналогового сигнала в цифровой (и наоборот) есть два важных свойства - это частота дискретизации (она же частота семплирования или sample rate) и глубина дискретизации (битность).

    Частота дискретизации - это частота, с которой звуковой сигнал режется на кусочки (семплы). Не повторите мою ошибку: с частотой звука частота дискретизации связана только через теорему Котельникова, которая говорит: для того, чтобы однозначно восстановить исходный сигнал, частота дискретизации должна более чем в два раза превышать наибольшую частоту в спектре сигнала. Таким образом используемая при записи CD и музыки частота дискретизации в 44,1 кГц покрывает
    слышимый человеком диапазон частот.

    Битность - это глубина дискретизации, измеряемая в битах, то есть это количество бит, используемое для записи амплитуды сигнала. При записи CD используется 16 бит, что достаточно для в 96 дБ, то есть мы сможем записать звук, у корого разница между самой тихой и самой громкой его частями составляет 96 дБ, что почти всегда достаточно для записи любой музыки. В студиях при записи обычно применяют 24-битную разрядность, что даёт динамический диапазон в 144 дБ, но поскольку 99% устройств, воспроизводящих звук (магнитофоны, плееры, звуковые карты, идущие в комлекте с компьютером) умеют обрабатывать только 16-разрядный звук, при рендеринге всё равно придётся потерять 48 дБ (144 минус 96) динамического диапазона, используя 16-битное разрешение.

    Напоследок подсчитаем битрейт музыки на Audio CD:
    16 бит x 44 100 семплов в секунду x 2 канала = 1 411 200 бит в секунду = 1 411,2 кбит/с.

    Таким образом, одна секунда записи на Audio CD занимает 172 килобайта или 0,168 мегабайта.

    Это всё, что я хотел рассказать про запись звука на компьютере.
    Ну, или почти всё.

    Последний раздел для хардкорных читатателей.

    Dither

    При рендеринге проектов в звуковых редакторах при выборе формата 44 100 kHz 16 bit иногда появляется галочка Dither. Что это такое?
    Это подмешивание псевдослучайного сигнала. Едва ли вам стало легче от такой формулировки, но я сейчас объясню.

    При аналого-цифровом преобразовании происходит округление амплитуды. То есть при 16-битной глубине дискретизации нам доступно 2 16 = 65 536 возможных вариантов уровня амплитуды. Но если амплитуда у звука в одном из семплов оказалась равной 34 целых и 478 тысячных, то нам придётся её округлить до 34.

    Для малых уровней амплитуды входного сигнала такое округление несёт негативные последствия в виде искажений, с чем и борется dither .

    Вот теперь точно всё. Спасибо за чтение!

    Не забудьте написать комментарий и нажать на красивые кнопочки социальных сетей в низу статьи.

    Звук (звуковая волна ) –это упругая волна, воспринимаемая органом слуха человека и животных . Иначе говоря, звук представляет собой распространение колебаний плотности (или давления) упругой среды, возникающих при взаимодействии частиц среды друг с другом.

    Атмосфера (воздух) является одной из упругих сред. Распространение звука в воздухе подчиняется общим законам распространения акустических волн в идеальных газах, а также имеет особенности, обусловленные непостоянством плотности, давления, температуры и влажности воздуха. Скорость звука определяется свойствами среды и вычисляется по формулам для скорости упругой волны.

    Существуют искусственные и естественные источники звука. К искусственным относятся излучатели на основе:

    Колебаний твёрдых тел (струны и деки музыкальных инструментов, диффузоры громкоговорителей, мембраны телефонов, пьезоэлектрические пластины);

    Колебаний воздуха в ограниченном объёме (органные трубы., свистки);

    Удара (клавиши рояля, колокол);

    Электрического тока (электроакустические преобразователи).

    К естественным источникам относятся:

    Взрыв, обвал;

    Обтекание препятствий потоком воздуха (обдувание ветром угла здания, гребня морской волны).

    Также существуют искусственные и естественные приёмники звука:

    Электроакустические преобразователи (микрофон в воздухе, гидрофон в воде, геофон в земной коре) и другие приборы;

    Слуховой аппарат человека и животных.

    При распространении звуковых волн возможны явления, характерные для волн любой природы:

    Отражение от препятствия,

    Преломление на границе двух сред,

    Интерференция (сложение),

    Дифракция (огибание препятствий),

    Дисперсия (зависимость скорости звука в веществе от частоты звука);

    Поглощение (уменьшение энергии и интенсивности звука в среде вследствие необратимого превращения энергии звука в теплоту).

        Объективные характеристики звука

    Частота звука

    Частота звука, слышимого человеком, лежит в пределах от 16 Гц до16 - 20 кГц . Упругие волны с частотой ниже слышимого диапазона называют инфразвуком (в т. ч. сотрясение), сболее высокой частотойультразвуком , а самые высокочастотные упругие волны –гиперзвуком .

    Весь частотный диапазон звука можно разделить на три части (табл. 1.).

    Шум имеет сплошной спектр частот (или длин волн) в области низкочастотного звука (табл. 1, 2). Сплошной спектр означает, что частоты может иметь любое значение из данного интервала.

    Музыкальные , или тональные , звуки обладают линейчатым спектром частот в области среднечастотного и частично высокочастотного звука. Оставшуюся часть высокочастотного звука занимает свист. Линейчатый спектр означает, что музыкальные частоты имеют лишь строго определённые (дискретные) значения из указанного интервала.

    Кроме того, интервал музыкальных частот делят на октавы. Октава – это интервал частот, заключённый между двумя граничными значениями, верхняя из которых вдвое больше нижней (табл. 3)

    Общепринятые октавные полосы частот

    Октавные полосы частот

    min , Гц

    max , Гц

    ср , Гц

    Примеры интервалов частот звука, создаваемого человеческим голосовым аппаратом и воспринимаемого человеческим слуховым аппаратом, приведены в табл.4.

    Контральто, альт

    Меццо-сопрано

    Колоратурное сопрано

    Примеры частотных диапазонов некоторых музыкальных инструментов приведены в таблице 5. Они охватывают не только звуковой диапазон, но и ультразвуковой.

    Музыкальный инструмент

    Частота, Гц

    Саксофон

    Животные, птицы и насекомые создают и воспринимают звук других частотных диапазонов, нежели человек (табл. 6).

    В музыке каждую синусоидальную звуковую волну называют простым тоном, или тоном. Высота тона зависит от частоты: чем больше частота, тем выше тон. Основным тоном сложного музыкального звука называют тон, соответствующий наименьшей частоте в его спектре. Тоны, соответствующие остальным частотам, называются обертонами . Если обертоны кратны частоте основного тона, то обертоны называются гармоническими . Обертон с наименьшей частотой называется первой гармоникой, со следующей - второй и т.л.

    Музыкальные звуки с одним и тем же основным тоном могут различаться тембром. Тембр зависит от состава обертонов, их частот и амплитуд, характера их нарастания в начале звучания и спада в конце.

    Скорость звука

    Для звука в различных средах справедливы общие формулы (22) – (25). При этом следует учесть, что формула (22) применима в случае сухого атмосферного воздуха и с учётом числовых значений коэффициента Пуассона, молярной массы и универсальной газовой постоянной может быть записана в виде:

    Однако, реальный атмосферный воздух всегда имеет влажность, которая влияет на скорость звука. Это обусловлено тем, что коэффициент Пуассона зависит от отношения парциального давления водяного пара (p пар ) к атмосферному давлению (p ). Во влажном воздухе скорость звука определяют по формуле:

    .

    Из последнего уравнения видно, что скорость звука о влажном воздухе скорость звука немного больше, чем в сухом.

    Численные оценки скорости звука, учитывающие влияние температур и влажности атмосферного воздуха, можно осуществлять по приближённой формуле:

    Эти оценки показывают, что при распространении звука вдоль горизонтального направления (0 x ) с увеличением температуры на1 0 C скорость звука возрастает на0,6 м/с . Под влиянием водяного пара с парциальным давлением не более10 Па скорость звука возрастает менее чем на0,5 м/с . А в целом, при максимально возможном парциальном давлении водяного пара у поверхности Земли, скорость звука увеличивается не более чем1 м/с .

    Звуковое давление

    При отсутствии звука атмосфера (воздух) является невозмущённой средой и имеет статическое атмосферное давление (
    ).

    При распространении звуковых волн к этому статическому давлению добавляется дополнительное переменное давление, обусловленное сгущениями и разрежениями воздуха. В случае плоских волн можно записать:

    где p зв, max – амплитуда звукового давления, - циклическая частота звука,k– волновое число. Следовательно, атмосферное давление в фиксированной точке в данный момент времени становится равным сумме этих давлений:

    Звуковое давление – это переменное давление, равное разности мгновенного фактического атмосферного давления в данной точке при прохождении звуковой волны и статического атмосферного давления при отсутствии звука :

    Звуковое давление в течение периода колебаний меняет своё значение и знак.

    Звуковое давление практически всегда намного меньше атмосферного

    Оно становится велико и соизмеримо с атмосферным при возникновении ударных волн во время мощных взрывов или при прохождении реактивного самолета.

    Единицами измерения звукового давления служат следующие:

    - паскаль в СИ
    ,

    - бар в СГС
    ,

    - миллиметр ртутного столба ,

    - атмосфера .

    На практике приборы измеряют не мгновенное значение звукового давления, а так называемое эффективное (илидействующее )звуковое давление . Оно равноквадратному корню из среднего значения квадрата мгновенного звукового давления в данной точке пространства в данный момент времени

    (44)

    и поэтому называется также среднеквадратическим звуковым давлением . Подставляя выражение (39) в формулу (40), получим:

    . (45)

    Звуковое сопротивление

    Звуковым (акустическим) сопротивлением называют отношение амплитуд звукового давления и колебательной скорости частиц среды:

    . (46)

    Физический смысл звукового сопротивления : оно численно равно звуковому давлению, вызывающему колебания частиц среды с единичной скоростью:

    Единица измерения звукового сопротивления в СИ – паскаль-секунда на метр :

    .

    В случае плоской волны скорость колебаний частиц равна

    .

    Тогда формула (46) примет вид:

    . (46*)

    Существует также и другое определение звукового сопротивления, как произведение плотности среды и скорости звука в этой среде:

    . (47)

    Тогда его физический смысл состоит в том, что оно численно равно плотности среды, в которой распространяется упругая волна с единичной скоростью:

    .

    Кроме акустического сопротивления в акустике используется понятие механическое сопротивление (R м ). Механическое сопротивление представляет собой отношение амплитуд периодической силы и колебательной скорости частиц среды:

    , (48)

    где S – площадь поверхности излучателя звука. Механическое сопротивление измеряется вньютон-секундах на метр :

    .

    Энергия и сила звука

    Звуковая волна характеризуется теми же энергетическими величинами, что и упругая волна.

    Каждый объем воздуха, в котором распространяются звуковые волны, обладает энергией, складывающейся из кинетической энергии колеблющихся частиц и потенциальной энергии упругой деформации среды (см. формулу (29)).

    Интенсивность звука принято называть силой звука . Она равна

    . (49)

    Поэтому физический смысл силы звука аналогичен смыслу плотности потока энергии: численно равна среднему значению энергии, которая переносится волной за единицу времени через поперечную поверхность единичной площади.

    Единица измерения силы звука – ватт на квадратный метр:

    .

    Сила звука пропорциональна квадрату эффективного звукового давления и обратно пропорциональна звуковому (акустическому) давлению:

    , (50)

    или, учитывая выражения (45),

    , (51)

    где R ак акустическое сопротивление.

    Звук можно также характеризовать звуковой мощностью. Звуковая мощность – это общее количество звуковой энергии, излучаемой источником в течение определённого времени через замкнутую поверхность, окружающую источник звука :

    , (52)

    или, учитывая формулу (49),

    . (52*)

    Звуковая мощность, как и любая другая, измеряется в ваттах :

    .

    Звуковыми волнами или просто звуком принято называть волны, воспринимаемые человеческим ухом. Диапазон звуковых частот лежит в пределах приблизительно от 20 Гц до 20 кГц. Волны с частотой менее 20 Гц называются инфразвуком , а с частотой более 20 кГц - ультразвуком . Волны звукового диапазона могут распространяться не только в газе, но и в жидкости (продольные волны) и в твердом теле (продольные и поперечные волны). Однако волны в газообразной среде - среде нашего обитания - представляют особый интерес. Изучением звуковых явлений занимается раздел физики, который называют акустикой .

    При распространении звука в газе атомы и молекулы колеблются вдоль направления распространения волны. Это приводит к изменениям локальной плотности ρ и давления p . Звуковые волны в газе часто называют волнами плотности или волнами давления.

    В простых гармонических звуковых волнах, распространяющихся вдоль оси OX , изменение давления p (x , t ) зависит от координаты x и времени t по закону

    Два знака в аргументе косинуса соответствуют двум направлениям распространения волны. Соотношения между круговой частотой ω, волновым числом k , длиной волны λ, скоростью звука υ такие же, как и для поперечных волн в струне или резиновом жгуте (2.6):

    Важной характеристикой звуковых волн является скорость их распространения . Она определяется инертными и упругими свойствами среды. Скорость распространения продольных волн в любой безграничной однородной среде определяется по формуле

    где B - модуль всестороннего сжатия, ρ - средняя плотность среды. Еще Ньютон пытался вычислить значение скорости звука в воздухе. Он предположил, что упругость воздуха просто равна атмосферному давлению p атм, тогда скорость звука в воздухе получается меньшей 300 м/с, в то время, как истинная скорость звука при нормальных условиях (т. е. при температуре 0 °С и давлении 1 атм) равна 331,5 м/с, а скорость звука при температуре 20 °С и давлении 1 атм равна 343 м/с. Только через сто с лишним лет французский ученый Пьер Лаплас показал, что предположение Ньютона равносильно предположению о быстром выравнивании температуры между областями разрежения и сжатия. Это предположение из-за плохой теплопроводности воздуха и малого периода колебаний в звуковой волне не выполняется. На самом деле между областями разрежения и сжатия газа возникает разность температур, которая существенно влияет на упругие свойства. Лаплас предположил, что сжатие и разрежение газа в звуковой волне происходят по адиабатическому закону , т. е. без влияния теплопроводности. Формула Лапласа (1816 г.) имеет вид

    где p - среднее давление в газе, ρ - средняя плотность, γ - некоторая константа, зависящая от свойств газа. Для двухатомных газов γ = 1,4. Расчет скорости звука по формуле Лапласа дает значение υ = 332 м/с (при нормальных условиях).

    В термодинамике доказывается, что коэффициент γ равен отношению теплоемкостей при постоянном давлении C p и при постоянном объеме C V . Формулу Лапласа можно представить в другом виде, если воспользоваться уравнением состояния идеального газа . Приведем здесь окончательное выражение:

    где T - абсолютная температура , M - молярная масса , R = 8,314 Дж/моль·К - универсальная газовая постоянная . Скорость звука сильно зависит от свойств газа. Чем легче газ, тем больше скорость звука в этом газе. Так, например, в воздухе (M = 29·10 -3 кг/моль) при нормальных условиях υ = 331,5 м/с, в гелии (M = 4·10 -3 кг/моль) υ = 970 м/с, в водороде (M = 2·10 -3 кг/моль) υ = 1270 м/с.

    В жидкостях и твердых телах скорость звуковых волн еще больше. В воде, например, υ = 1480 м/с (при 20 °С), в стали υ = 5-6 км/с.

    При восприятии различных звуков человеческое ухо оценивает их прежде всего по уровню громкости , зависящей от потока энергии или интенсивности звуковой волны. Воздействие звуковой волны на барабанную перепонку зависит от звукового давления , т. е. амплитуды p 0 колебаний давления в волне. Человеческое ухо является совершенным созданием Природы, способным воспринимать звуки в огромном диапазоне интенсивностей: от слабого писка комара до грохота вулкана. Порог слышимости соответствует значению p 0 порядка 10 -10 атм, т. е. 10 -5 Па. При таком слабом звуке молекулы воздуха колеблются в звуковой волне с амплитудой всего лишь 10 -7 см! Болевой порог соответствует значению p 0 порядка 10 -4 атм или 10 Па. Таким образом, человеческое ухо способно воспринимать волны, в которых звуковое давление изменяется в миллион раз. Так как интенсивность звука пропорциональна квадрату звукового давления, то диапазон интенсивностей оказывается порядка 10 12 ! Человеческое ухо, способное воспринимать звуки в таком огромном дипазоне интенсивности, можно сравнить с прибором, который можно использовать для измерения и диаметра атома и размеров футбольного поля.

    Для сравнения укажем, что при обычных разговорах людей в комнате интенсивность звука приблизительно в 10 6 раз превышает порог слышимости, а интенсивность звука на рок-концерте приближается к болевому порогу.

    Еще одной характеристикой звуковых волн, определяющей их слуховое восприятие, является высота звука . Колебания в гармонической звуковой волне воспринимаются человеческим ухом как музыкальный тон . Колебания высокой частоты воспринимаются как звуки высокого тона , колебания низкой частоты - как звуки низкого тона . Звуки, издаваемые музыкальными инструментами, а также звуки человеческого голоса могут сильно различаться по высоте тона и по диапазону частот. Так, например, диапазон наиболее низкого мужского голоса - баса - простирается приблизительно от 80 до 400 Гц, а диапазон высокого женского голоса - сопрано - от 250 до 1050 Гц.

    Диапазон звуковых колебаний, соответствующий изменению частоты колебаний в два раза, называется октавой . Голос скрипки, например, перекрывает приблизительно три с половиной октавы (196-2340 Гц), а звуки пианино - семь с лишним октав (27,5-4186 Гц).

    Когда говорят о частоте звука, издаваемого струнами любого струнного музыкального инструмента, то имеется в виду частота f 1 основного тона. Но в колебаниях струн могут присутствовать и гармоники, частоты f n которых удовлетворяют соотношению:

    f n = nf 1 , (n = 1, 2, 3...).

    Поэтому звучащая струна может излучать целый спектр волн с кратными частотами. Амплитуды A n этих волн зависят от способа возбуждения струны (смычок, молоточек); они определяют музыкальную окраску звука или тембр . Аналогично обстоит дело с духовыми музыкальными инструментами. Трубы духовых инструментов являются акустическими резонаторами , то есть акустическими колебательными системами, способными возбуждаться (резонировать) от звуковых волн определенных частот. При определенных условиях в воздухе внутри труб возникают стоячие звуковые волны. На рис. 2.7.1 показаны несколько типов стоячих волн (мод) в органной трубе, закрытой с одного конца и открытой с другого. Звуки, издаваемые трубами духовых инструментов, состоят из целого спектра волн с кратными частотами.

    При настройке музыкальных инструментов часто используется устройство, называемое камертоном . Оно состоит из деревянного акустического резонатора и скрепленной с ним металлической вилки, настроенных в резонанс. При ударе молоточком по вилке вся система возбуждается и издает чистый музыкальный тон.

    Акустическим резонатором является и гортань певца. На рис. 2.7.2 представлены спектры звуковых волн, испускаемых камертоном, струной пианино и низким женским голосом (альт), звучащими на одной и той же ноте.

    Звуковые волны, частотные спектры которых изображены на рис. 2.7.2, обладают одной и той же высотой, но различными тембрами .

    Рассмотрим теперь явление, возникающее при наложении двух гармонических звуковых волн с близкими, но все же несколько отличающимися частотами. Это явление носит название биений . Оно возникает, например, при одновременном звучании двух камертонов или двух гитарных струн, настроенных на почти одинаковые частоты. Биения воспринимаются ухом как гармонический тон, громкость которого периодически изменяется во времени. Пусть звуковые давления p 1 и p 2 , действующие на ухо, изменяются по законам

    p 1 = A 0 cos ω 1 t и p 2 = A 0 cos ω 2 t .

    В соответствии с принципом суперпозиции полное давление, вызываемое обеими волнами в каждый момент времени, равно сумме звуковых давлений, вызываемых в тот же момент времени каждой волной в отдельности.

    Суммарное действие обеих волн с помощью тригонометрических преобразований можно представить в виде

    На рис. 2.7.3(1) изображены зависимости давлений p 1 и p 2 от времени t . В момент времени t = 0 оба колебания находятся в фазе, и их амплитуды складываются. Так как частоты колебаний несколько отличаются друг от друга, через некоторое время t 1 колебания окажутся в противофазе. В этот момент суммарная амплитуда обратится в нуль (колебания «гасят» друг друга). К моменту времени t 2 = 2t 1 колебания снова окажутся в фазе и т. д. (рис. 2.7.3 (2)).

    Минимальный интервал между двумя моментами времени с максимальной (или минимальной) амплитудой колебаний называется периодом биений T б. Медленно изменяющаяся амплитуда A результирующего колебания равна

    Период T б изменения амплитуды равен 2π / Δω. Это можно показать и другим способом, предположив, что периоды колебаний давлений в звуковых волнах T 1 и T 2 таковы, что T 1 < T 2 (т. е. ω 1 > ω 2). За период биений T б происходит некоторое число n полных циклов колебаний первой волны и (n - 1) циклов колебаний второй волны.