Современные технологии в медицинской диагностике. Современные технологии в медицине и косметологии. Противозачаточные таблетки для мужчин


Чтобы продемонстрировать плачевное состоянии медицины в Молдавии, тамошние медики создали видео, на котором якобы проводят операцию на ребенке при помощи строительной дрели и ржавых кусачек. И это на фоне того, как в развитых странах с каждым днем появляются все новые еще более точные и и технологии . Десятку самых интересных из них посвящен этот обзор.



Американские исследователи из Бостона придумали способ, позволяющий человеку прекрасно обходиться без необходимости дышать воздухом. Достаточно лишь одной инъекции, чтобы в течение получаса ваш организм был в достаточной степени обеспечен кислородом. Это позволит избавиться от процедуры трахеотомии и будет весьма полезно в медицине катастроф и военно-полевой хирургии.




Шведские ученые придумали способ, как превратить обычный DVD-проигрыватель в универсальную медицинскую лабораторию. Оказывается, лазер для считывания диска можно использовать для анализа крови на разные составляющие, проверки ДНК, а также поиска вируса иммунодефицита человека в представленных образцах.




Ученые создали прибор с названием Scanadu, который является реальным воплощением известного по телесериалам и фильмам «Звездный Путь» трикодера. Этот небольшой инструмент позволит в считанные секунды определять температуру тела человека, его кровяное давление, показания электрокардиограммы, частоту сердечных сокращений и дыхания, а также количество кислорода в крови.




Израильская компания Tikun Olam засеяла несколько полей на севере страны генетически модифицированной коноплей, которая не приводит к наркотическому опьянению, зато поможет врачам и больным в лечении рака, болезни Паркинсона, рассеянного склероза, посттравматического стрессового расстройства и некоторых других недугов.




Кстати, о конопле. В некоторых штатах США производные из этого растения вполне можно употреблять в медицинских целях, к примеру, для улучшения настроения при депрессиях или избавления от боли при раке. Это лечебное средство стало настолько популярным, что появился даже специальный автомат Autospense, торгующий им. Правда, при совершении покупки нужно не только оплатить товар, но и указать уникальный цифровой код, полученный от лечащего доктора.




3D-принтеры появились в широкой доступности всего несколько лет назад, но уже сейчас их вовсю применяют не только ученые, инженеры и дизайнеры, но и медики, которые с помощью этих технологий создают протезы и имплантаты, заменяющие ампутированные части тела и даже кости.




Белье Smart-E-Pants создано для лежачих больных, у которых есть риск возникновения пролежней. Каждые десять минут оно будет посылать электрический импульс, который заставит мышцу сократиться. И не важно, что эта часть тела у человека давно парализована.




Исследовательская группа 2AI Labs создала очки O2amp, которые позволяют определить насыщение кожи человека кислородом, концентрацию гемоглобина в его крови и частоту сердцебиения. Они также помогут найти вены под кожей, выявить внутренние и поверхностные травмы, а также некоторые виды болезней.




Голландские ученые из Radboud Universiteit Nijmegen создали гель, который при нагревании не плавится, а, наоборот, застывает, что делает его похожим на нитевидные белковые структуры. Данную субстанцию можно использовать при травмах для остановки кровотечений и временного «ремонта» поврежденных органов, что позволит человеку дожить до операции.




Da Vinci – это робот, который не сможет сыграть на гитаре, как об этом мечтали создатели фильма «Гостья из будущего», зато без труда проведет самые сложные медицинские операции. Правда, под управлением живого человека, который будет сидеть за стоящим рядом пультом управления дроидом. Этот сложный механизм позволит автоматизировать многие процессы и проводить максимально точно и уверенно даже самые мельчайшие манипуляции.


Медицина развивается очень быстро, и достижения в области медицинской науки и техники значительно изменили нашу жизнь. Научные исследования, высокотехнологичное оборудование и инновационные устройства сделали возможным многие из тех вещей, которые совсем недавно казались нереальными. Мы собрали для вас список из 10 последних медицинских технологий, которые помогут улучшить здоровье человечества в 2017 году.

1. Кишечные бактерии

Использование кишечных бактерии для профилактики, диагностики и лечения заболеваний. Бактерии в нашем организме – как и соединения, которые они высвобождают – влияют на переваривание пищи и развитие определенных болезней. Биотехнологические компании, которые когда-то были сосредоточены на геноме, теперь активно исследуют потенциал кишечного микробиома, разрабатывая новые методы использования пробиотиков для предотвращения опасного для здоровья кишечного дисбаланса.

2. Новые препараты для лечения диабета

Половина пациентов с сахарным диабетом 2 типа умирают от осложнений, связанных с сердечно-сосудистыми заболеваниями. Но теперь благодаря новым препаратам шансы диабетиков дожить до своего 65-го дня рождения выросли на 70%. Эти средства снижают прогрессирование болезни сердца, оказывая комплексный эффект на многие органы. Учитывая эти положительные результаты, эксперты прогнозируют значительные изменения в составе лекарств, выписываемых для больных сахарным диабетом, а также волну новых исследований, ориентированных на сахарный диабет 2 типа и сопутствующие ему заболевания.

3. Клеточная иммунотерапия

Ученые разработали клеточную иммунотерапию, при помощи которой иммунные Т-клетки пациента удаляются и генетически перепрограммируются, чтобы искать и уничтожать раковые клетки. Данный новаторский метод лечения показал впечатляющие результаты при лечении лейкемии и неходжкинской лимфомы. Считается, что клеточная иммунотерапия однажды сможет заменить химиотерапию и спасти тысячи жизней без побочных эффектов.

4. Жидкая биопсия

Тест, известный как «жидкая биопсия», способен выявлять признаки циркулирующей ДНК опухоли, которой содержится в кровотоке в 100 раз больше, чем самих опухолевых клеток. «Жидкая биопсия» преподносится в качестве ведущей технологии для диагностики рака, и, хотя исследования на эту тему еще продолжаются, годовой объем продаж этого революционного теста, согласно прогнозам, составит 10 миллиардов долларов. Некоторые фармацевтические компании уже разрабатывают наборы для тестирования, чтобы как можно скорее выйти с ними на рынок.

5. Улучшение функции безопасности автомобилей

Автомобильные аварии остаются ведущей причиной смерти и инвалидности, не говоря уже о крупных расходах. Новые автоматизированные функции безопасности обещают значительно сократить число опасных дорожно-транспортных происшествий. Эти функции варьируются от систем предупреждения столкновений до адаптивного круиз-контроля.

6. Обмен медицинской информацией FHIR

В современном мире медицинским работникам становится все более трудно эффективно и безопасно обмениваться данными о пациентах. Информационные технологии стали настолько разнообразными, что сегодня медикам все сложнее общаться друг с другом. Чтобы решить эту проблему, учеными был разработан новый инструмент – FHIR (Fast Healthcare Interoperability Resources) – который будет выступать в качестве посредниками между двумя системами здравоохранения, позволяя передавать клинические данные и выставлять счета.

7. Кетамин для лечения депрессии

В настоящее время ученые исследуют Кетамин – препарат, который обычно используется для анестезии – на его способность подавлять депрессивные расстройства. В подавляющем большинстве случаев результаты оказались благоприятными, демонстрируя, что 70% пациентов с резистентной к терапии депрессией наблюдали значительное уменьшение выраженности симптомов в течение 24 часов с момента получения Кетамина. Столь быстрое лечение тяжелой депрессии является крайне важным, отмечают медики, так как депрессия представляют собой серьезную проблему здравоохранения и нередко приводит к самоубийствам. Вероятно, в будущем Кетамин будет доступен для лечения пациентов, страдающих от депрессивных расстройств.

8. 3D-визуализация и дополненная реальность

Хирурги обычно полагаются на специальные камеры, которые помогают им проводить операции. Тем не менее, итог работы и возможность выполнять самые точные задачи также, как правило, зависят от собственных глаз медика и интерпретации полученной информации. Тем не менее, периферическое зрение человека ограничено, а мышцы спины и шеи бывают напряжены во время работы. Чтобы решить эту проблему, ученые начали экспериментировать с технологией 3D-визуализации и дополненной реальности, объединяющей реальный и виртуальный мир. Разработанные стереоскопические системы позволяют создавать визуальные шаблоны для хирургов, помогая им выполнять определенные задачи. Отмечается, что данная технология обеспечивает дополнительный комфорт и дает возможность хирургам более эффективно работать. Несколько больниц планируют протестировать эти виртуальные инструменты реальности в 2017 году.

9. Домашний тест на ВПЧ

Большинство сексуально активных женщин имеют вирус папилломы человека (ВПЧ). Согласно статистике, некоторые штаммы ВПЧ ответственны за 99% случаев рака шейки матки. Несмотря на большие успехи в области профилактики и лечения ВПЧ, лишь немногие женщины имеют доступ к ВПЧ-тестам и вакцинам. Для расширения этого доступа ученые разработали набор для самостоятельного выполнения теста на ВПЧ, который включает пробирку и тампон. Женщины могут отправить образец в лабораторию и получить предупреждение о наличии опасных штаммов ВПЧ.

10. Биорассасываемые стенты

Ежегодно 600 тысяч человек проходят операции по установке металлических стентов для лечения закупорки коронарной артерии. Стент остается в организме навсегда и в дальнейшем может вызвать другие осложнения. Чтобы этого не произошло, ученые разработали первый в мире биорассасываемый стент. Он сделан из природного полимера и расширяет забитую артерию в течение двух лет, после чего рассасывается, подобно растворимым швам.

Сегодняшний мир стал очень технологичным. И медицина старается держать марку. Новые достижения все плотнее связаны с генной инженерией, клиники и врачи уже во всю применяют «облачные технологии», а пересадка 3D-органов в скором времени обещает стать обычной практикой.

Борьба с онкологией на генетическом уровне

На первом месте рейтинга – медицинский проект от компании Google . Дочерний фонд компании под названием Google Ventures инвестировал $130 млн в «облачный» проект «Flatiron», направленный на борьбу с онкологией в медицине. Проект ежедневно собирает и анализирует сотни тысяч данных о случаях раковых заболеваний, передавая выводы врачам.

По словам директора Google Ventures Билла Мариса в скором времени лечение раковых заболеваний будет проходить на генетическом уровне, а химиотерапия через 20 лет станет примитивной , как сегодня дискета или телеграф.

Беспроводные технологии в медицине

Браслеты здоровья или «умные часы» – хороший пример того, как современные технологии в медицине помогают людям быть здоровыми. Посредством привычных устройств каждый из нас может контролировать сердечные ритмы, артериальное давление, измерять шаги и количество сброшенных калорий.

В некоторых моделях браслетов предусмотрена передача данных «в облако» для дальнейшего анализа врачами. В сети интернет можно загрузить десятки программ для контроля здоровья, например, Google Fit или HealthKit.

Компания AliveCor пошла еще дальше и предложила устройство, которое синхронизируется со смартфоном и позволяет делать снимок ЭКГ в домашних условиях . Прибор представляет собой чехол со специальными датчиками. Данные снимка через интернет поступают к лечащему врачу.

Восстановление слуха и зрения

Кохлеарный имплант для восстановления слуха

В 2014 году австралийские ученые предложили способ лечения слуха на генетическом уровне. Медицинский метод основан на том, чтобы безболезненно внедрить в организм человека ДНК-содержащий препарат , внутри которого «вшит» кохлеарный имплант. Имплант взаимодействует с клетками слухового нерва и к пациенту постепенно возвращается слух.

Бионический глаз для восстановления зрения

С помощью импланта «бионический глаз» ученые научились восстанавливать зрение. Первая медицинская операция прошла в США еще в 2008 году. Помимо пересаженной искусственной сетчатки, пациентам выдаются специальные очки со встроенной камерой. Система позволяет воспринимать полноценную картинку, различать цвета и очертания предметов. Сегодня в очереди на проведение подобной операции стоит свыше 8 000 человек

Медицина шагнула ближе к лечению СПИДа

Ученые из Рокфеллеровского университета (Нью Йорк, США) совместно с фармацевтической компании GlaxoSmithKline провели клинические испытания медицинского препарат а GSK744 , который способен снизить вероятность заражения ВИЧ более чем на 90% . Вещество способно подавлять работу фермента, с помощью которого ВИЧ модифицирует ДНК клетки и затем размножается в организме. Работа значительно приблизила ученых к созданию нового лекарства против ВИЧ.

Органы и ткани с помощью 3D-принтеров

3D-биопринтинг: органы и ткани печатают с помощью принтера

За последние 2 года ученые на практике смогли добиться создания органов и тканей с помощью 3D-принтеров и успешно вживлять их в организм пациента.

Современные медицинские технологии позволяют создавать протезы рук и ног, части позвоночника, уши, нос, внутренние органы и даже клетки тканей.

Весной 2014 года врачи Университетского медицинского центра Утрехта (Голландия) успешно провели первую в истории медицины пересадку черепной кости, созданную с помощью 3D-принтера.


Не пропустите интересные новости в фотографиях:




  • Дизайн кухни в стиле «кафе»

  • Романтические спальни: Как украсить на День Святого Валентина

  • Дизайн ванной комнаты в синих и голубых тонах

  • 12 лучших приспособлений для тех, кто любит готовить

Новая технология из Университета Стэнфорда позволяет сделать внутренние органы прозрачными

Команда исследователей Стенфордского университета разработала способ, который позволяет делать органы млекопитающих, например лабораторных мышей или человеческих тел, завещанных науке, прозрачными. После того, как они сделаны прозрачными, учёные могут вводить в них химические соединения, которые прикрепляются и подсвечивают определённые структуры - например, различные типы клеток. Результатом этого становится целостный орган, который учёные могут видеть изнутри и снаружи.

Поскольку такая визуализация очень перспективна для изучения органов, это уже не первая попытка, когда учёные пытаются сделать мозг прозрачным. Новая техника, названная CLARITY, лучше работает с химическими агентами и более быстра по сравнению с предшественницами.

Чтобы продемонстрировать её возможности, её разработчики из Стэнфорда сделали несколько снимков мышиного мозга:

Изображение мозга мыши, полученное с помощью технологии CLARITY


Часть гиппокампа мыши с различными типами нейронов, окрашенными в разные цвета
Или взгляните на это видео от «Nature», чтобы увидеть ещё больше снимков, плюс несколько моделей:

Изготовление этих снимков занимает восемь дней. Сперва в мозг мыши впрыскивается раствор гидрогеля. Затем мозг и гель помещаются в особый инкубатор. В нём гель присоединяется к различным составляющим мозга, за исключением липидов. Эти липиды прозрачны и окружают собой каждую клетку. Когда учёные извлекают этот неприсоединившийся жир, они получают в своё распоряжение ясное изображение всего остального мозга.

После этого исследователи могут добавить в него различные молекулы для окраски тех частей мозга, которые они хотят исследовать, и изучают их под световым микроскопом.

Новые светящиеся антибиотики помогают выявить бактериальные инфекции

Несмотря на достижения в области технологии и на все усилия, прилагаемые врачами, бактериям часто удается проникнуть в живые ткани на медицинских имплантатах, таких как костные винты, где они вызывают тяжёлые, даже угрожающие жизни, инфекции. Согласно новому исследованию, опубликованному в Nature Communications, предлагается использовать люминесцентные антибиотики для выявления такого рода инфекций, прежде чем они станут слишком опасными.

В качестве главного автора исследования Марлен ван Остен (Marleen van Oosten) объяснила, что очень трудно отличить нормальные послеоперационные отёки от инфекции — единственный способ — биопсия, которая сама по себе является инвазивной процедурой. Микробиолог из Университета Гронингена в Нидерландах подчеркнула, что такая инфекция может стать огромной проблемой, так как последняя распространяется и развивается в течение многих лет, прежде чем окончательно обнаруживается. Для лучшей локализации бактерий в организме, ван Oosten и ее коллеги окрасили антибиотик ванкомицин флуоресцентным красителем, чтобы помочь определить поражённые ткани. Если бактерий нет, то ничего не происходит, но если это бактериальная инфекция, то препарат специфически связывается с пептидами клеточной мембраны бактерий, и, из-за добавления флуоресцентного красителя, заставляет мембраны светиться. Тем самым по сути дела ванкомицин становится маркером инфекции.

Исследователи инфицировали мышей бактериями золотистого стафилококка, а затем дали им очень небольшую дозу антибиотика — достаточную, чтобы бактерии заметно светились, если рассматривать их флуоресценцию под микроскопом, но не достаточную, чтобы убить эти бактерии. А затем учёные имплантировали металлические пластины, покрытые флуоресцентным антибиотиком, в берцовую кость от трупа человека, на 8 миллиметров ниже кожи. Некоторые из пластин были покрыты эпидермальным стафилококком — бактерией, которая живёт на коже человека. При этом камерой, которая обнаруживает флуоресценцию, легко определялись светящиеся пластины с инфекцией.

Биоинженер Нирен Мёрти (Niren Murthy) из Калифорнийского университета, Беркли, являясь сторонником этого метода, считает, что подобный способ обнаружения бактериальных инфекций крайне необходим. Но он также указывает на возможную проблему - будет ли флуоресценция достаточно сильной для наблюдения при только зарождающемся очаге заражения в организме человека?

Ван Остен, как оптимистка, считает, что в ближайшем будущем эта технология будет легкодоступна для широкого круга людей.

Новая надежда для лысых
Новый метод дает надежду, но до панацеи ему далеко.
Готам Нэйк (Gautam Naik)

AFP 2013 Patrik Stollarz
Ученые изобрели способ выращивания новых человеческих волос, продолжая многолетние поиски медицинского средства от облысения. Имеющиеся на сегодня методы неудовлетворительны, потому что они не стимулируют рост новых волос. Благодаря средствам от облысения можно замедлить потерю волосяных фолликул или стимулировать рост имеющихся волос, но новые волосяные луковицы благодаря им не появятся. Не возникнут они и в результате пересадки волос, когда луковицы пересаживают с одной части головы на другую. В понедельник в журнале Proceedings of the National Academy of Sciences были опубликованы результаты одного исследования авторы которого показали, что на человеческой коже возможно выращивать новые волосы. «Мы пытаемся повторить то, что происходит в зародыше», когда спонтанно начинают расти новые волосы, говорит ведущий автор исследования профессор Колин Джахода (Colin Jahoda), занимающийся изучением стволовых клеток в Даремском университете в Англии. Этому открытию далеко до создания желанного лекарства, помогающего остановить выпадение волос и процесс облысения. Но ученые дали новую надежду тем, кто страдает от появляющихся с возрастом залысин, а также от облысения в результате болезни, ранения или ожога. Основу нового исследования составляют клетки дермального гребня. Это небольшая группа клеток, находящихся в нижней части фолликулы и дающих команду другим клеткам на создание волоса. Ученые сорок с лишним лет считали, что человеческие клетки дермального гребня можно размножать в лабораторной пробирке, а затем пересаживать их на кожу черепа, чтобы они создавали новые волосы. Но никаких результатов они не добились. После пересадки таких клеток в кожный покров они быстро прекращали вести себя как клетки дермального гребня и становились похожи на клетки кожи. А волосы из них так и не вырастали. В ходе последнего эксперимента исследователи нашли способ решения этой проблемы, изучая грызунов. Если волосяную луковицу грызуна пересадить ему на кожу, она сразу начинает формировать волос. Важным моментом, по словам профессора Джаходы, стало то, что в лабораторной пробирке клетки грызунов спонтанно объединяются и формируют трехмерные скопления. А человеческие клетки прилипают к дну тонким двухмерным слоем. Профессор Джахода и его коллеги из Колумбийского университета Нью-Йорка решили, что им нужно превратить плоский слой человеческих клеток в трехмерные гроздья. Ученые получили клетки дермального гребня от семи человеческих доноров и размножили их в лабораторных условиях. «А потом мы сделали очень простую вещь, — говорит профессор Джахода. — Мы капнули немного этой питательной среды, а потом перевернули ее вверх тормашками, что заставило клетки собраться в шар». В каждой такой сфере содержалось скопление примерно из 3000 клеток. Эти сферы пересадили в ткань крайней плоти, полученную от новорожденных, которая до этого была пересажена на спину мышам. По соображениям безопасности этот метод надо было сначала проверить на животных. (Поскольку ткань крайней плоти обычно безволосая, она наилучшим образом подходит для проверки данного способа выращивания волос.) Благодаря объемности питательной среды клетки частично восстановили свои свойства по выращиванию волос. Спустя шесть недель в пяти из семи трансплантатов появились новые волосяные луковицы, генетически похожие на луковицы доноров. Но ученым надо гораздо глубже изучить данный процесс, прежде чем переходить к экспериментам на человеке. Они пока не знают точно, как клетки дермального гребня будут взаимодействовать с клетками кожи. Им также надо понять механизмы управления, которые определяют различные свойства волос, такие как цвет, угол роста, расположение и текстура. Тем не менее, результаты исследований дали новый подход к стимулированию роста волос. Ученые могут теперь выделить главные гены, регулирующие процесс роста, и попытаться воздействовать на них. Либо же, проанализировав действие клеточных сфер, они могут найти препараты, также влияющие на функционирование волосяных луковиц.

Ученые изобрели лазерный глюкометр

Для поддержания хорошего здоровья, людям с сахарным диабетом необходимо постоянно отслеживать уровень сахара в крови. В настоящее время это можно сделать с помощью портативных глюкометров. Однако использование этих проборов сопряжено с рядом неприятных моментов: необходимо прокалывать палец, чтобы взять образец крови, кроме того, надо постоянно покупать тест-полоски.

Группа исследователей из Германии разработала новый, неинвазивный способ измерения уровня сахара в крови. На поверхность кожи воздействуют инфракрасным лазерным излучением, и с его помощью измеряют уровень сахара. По словам ученых, это открывает фантастические возможности для больных сахарным диабетом - теперь не надо прокалывать палец и использовать тест-полоски.

Измерение уровня сахара в крови стандартным глюкометром через несколько лет может уйти в прошлое. Немецкие ученые разрабатывают неинвазивное устройство для быстрого и безболезненного измерения

Новый неинвазивный глюкометр использует фотоакустическую спектроскопию для измерения глюкозы по уровню поглощения ею инфракрасного света. При попадании лазерного луча на кожу, молекулы глюкозы создают особый измеримый звук, который команда исследователей называет «сладкой мелодией глюкозы». Этот сигнал позволяет обнаружить сахар в крови за секунды.

Предыдущие попытки использовать фотоакустическую спектроскопию были затруднены искажениями при изменении давления воздуха, температуры и влажности, вызванными контактом с живой кожей. Чтобы избавиться от этих недостатков, команде разработчиков пришлось применить новые методы конструирования прибора.

Прибор все еще является экспериментальным, и прежде чем он поступит в продажу, его должны проверить и одобрить регулирующие органы. А тем временем исследователи продолжают совершенствовать устройство. Предполагается, что через три года глюкометр будет размером примерно с небольшую коробку из-под обуви, а еще позже появятся и портативные версии измерительного прибора.

Ученые изготовили мышцы для людей и биороботов

Ученые из Токийского университета создали полнофункциональные трехмерные скелетные мышцы, которые можно использовать в медицине и робототехнике.
Большинство экспериментов по выращиванию мышц ограничивались экспериментами с двумерными тканями, которые неспособны функционировать без плоской подложки. Японские ученые впервые изготовили отельную трехмерную мышцу, причем способную сокращаться. Кроме того, японцы не только смогли вырастить мышцу, но и «засеять» ее нервными стволовыми клетками, которые позволяют управлять сокращением мышц с помощью химической активации нейронов. Искусственно выращенная мышца обладает большой силой и тем же механизмом сокращения, что и натуральная. Благодаря использованию живых нервов, подобную искусственную мышцу можно трансплантировать и «подключить» к нервной системе человека.
Более того, новая искусственная мышца, по мнению разработчиков, может найти применение в робототехнике. Современные промышленные роботы могут делать невероятные вещи, но их системы управления по-прежнему остаются очень сложными. Роботы опираются на электрические сервоприводы, а системы обратной связи требуют очень точных оптических датчиков. Роботы с искусственными живыми мышцами могли бы упростить дизайн роботов, увеличить точность их движения при достаточно большой силе.

Нервные клетки, проросшие в искусственно выращенную мышцу

Исследователи попытались построить устройство, основанное на реальных нервах и мышцах и способные работать в бионических системах. Для его изготовления ученые использовали полимер (PDMS) нанесенный на стекло. Полимер выполнял роль каркаса, необходимого для правильного развития мышцы. Затем на полимер нанесли мышечные стволовые клетки и мышиные стволовые клетки (mNSCs), способные превращаться в нейроны и проращивать аксоны в мышцу. В процессе развития мышц (миогенеза) молодые клетки сливаются в длинные многоядерные волокна, так называемые мышечные трубочки. В результате получается пучок длинных мышечных волокон, способных сокращаться в одном направлении. Связь между мышечными волокнами и нейронами обеспечивается с помощью ацетилхолиновых рецепторов. Новую технологию выращивания полнофункциональных мышц можно применять в медицине и на производстве. Конечно, живая ткань не столь прочна и надежна, как сталь, но в некоторых приложениях «живые манипуляторы» или гибридные конструкции живая ткань/синтетика могут оказаться очень полезны.

http://gearmix.ru/archives/1453
http://gearmix.ru/archives/6077
http://inosmi.ru/world/20131023/214137908.html
http://rnd.cnews.ru/tech/news/line/index_science.shtml?2013/10/28/547542
http://rnd.cnews.ru/tech/robotics/news/line/index_science.shtml?2013/09/26/544315

Медицина завтрашнего дня и ее новейшие технологии уверенно входят в день сегодняшний. Широко практикуется малоинвазивная микрохирургия и высокоточная компьютерная диагностика, давно никого не удивляют возможности томографии, УЗИ, допплерометрии и других инновационных методик. А ученый мир уже предлагает новые прогрессивные технологии в сфере медицины, многие из которых уже взяты ею на вооружение в борьбе здоровое человечество.

Трехмерные принтеры для производства имплантатов

Принтеры 3D совсем недавно вошли в нашу жизнь, безмерно расширив возможности человека по созданию объектов не только инженерной и дизайнерской мысли, но и моделей медицинского назначения. С их помощью уже создаются протезы и всевозможные имплантаты – как отдельные кости, так и целые ампутированные конечности.

Для лежачих больных разработано специальное белье Smart-E-Pants с электронной «начинкой», которая каждые 10 минут подает на мышцы электрический импульс, заставляющий их сокращаться. Система эффективна даже для давно парализованных частей тела и практически полностью обездвиженных пациентов.

Стентирование артерий

Развитие новых технологий в медицине и создание инновационных материалов позволило широко внедрить баллонную ангиопластику – установку тончайших металлических каркасов в суженный атеросклеротическими бляшками просвет жизненно важных артерий. Операция осуществляется через небольшой прокол, является малоинвазивной и малокровной и относится при этом к так называемой хирургии «одного дня».

Очки, позволяющие видеть болезнь

Новое сообщение на тему инновационных медицинских технологий пришло от исследовательской группы 2AI Labs. Разработанные ими очки «O2amp» позволяют определять насыщение крови кислородом, уровень гемоглобина, состояние подкожных вен. С их помощью можно обнаружить внутренние сосудистые травмы и зафиксировать патологии, которые пока еще не дают явной симптоматики.

Создатели утверждают, что очки позволяют увидеть не только скрытые болезни, но даже настроение человека.

Проникновение бактерий в костные винты медицинских имплантатов угрожает пациенту тяжелым послеоперационным инфицированием, опасным для жизни. При этом обнаружить их обычно удается лишь тогда, когда процесс становится необратимым.

Микробиологи Университета Гронингена (Нидерланды) нашли способ ранней диагностики зарождающегося очага инфицирования с помощью люминесцентных антибиотиков, придающих флуоресцентное свечение пораженным тканям. Увидеть его можно с помощью специально разработанной камеры. Ученые надеются, что недалеко то время, когда практическое использование данного маркера бактериальной инфекции имплантатов станет доступным широкому кругу населения планеты.

Отслеживание уровня глюкозы в крови для больных диабетом людей станет проще с приходом на рынок медицинских услуг лазерных глюкометров. Это неинвазивный метод без проколов и тест-полосок, разработанный группой ученых медиков в Германии. Достаточно направить лазерный пучок инфракрасных лучей на участок кожи, как прибор за секунды определит уровень глюкозы.

Единственным недостатком экспериментальных образцов является их объемность (с обувную коробку), однако, в дальнейшем ученые планируют усовершенствовать модель до удобных портативных размеров.

Чип для измерения глюкозы на основе пота

Еще один новый метод неинвазивного мониторинга уровня сахара в крови – разработка чипа, способного выдавать необходимую информацию при соприкосновении с кожей. Для этого ему понадобится всего лишь капелька пота. Недостатком датчика является невозможность измерения в состоянии покоя – для получения данных придется чуть-чуть попотеть.

Прозрачные органы

Сообщение о новых технологиях в медицине пришло из Университета Стэнфорда, где учеными была разработана методика, позволяющая увидеть внутренние органы так, словно они прозрачны. Введение в них определенных химических соединений подсвечивает их отдельные внутренние структуры (типы клеток) и позволяет врачу видеть целостную картину состояния органа.

Пока данная методика отрабатывается на грызунах и завещанных науке человеческих телах, но успешность данных исследований позволяет надеяться на скорое внедрение в повседневную клиническую практику.

Трехмерные полнофункциональные мышцы, предназначенные как для роботов, так и для людей – новое слово в медицинских технологиях данного направления. Авторами изобретения ожидаемо стала страна передовой робототехники Япония. Выращенная искусственным путем мышца умеет сокращаться, имеет большую силу при высокой точности, может трансплантироваться в человеческий организм и даже подключаться к его нервной системе. Механизм ее работы аналогичен естественному.

Торические линзы, корректирующие астигматизм

На смену корректирующим данную патологию очкам, требующим длительного ношения, и контактным линзам старого поколения, не гарантирующим точного положения на глазном яблоке, приходят торические линзы, практически лишенные всех имеющихся ранее недостатков. Стабильная фиксация этих линз обеспечивается их неравномерной толщиной, увеличивающейся книзу и обеспечивающей призматический балласт и отсутствие смещения при любых движениях.

Ношение торических линз позволяет максимально сократить период коррекции астигматизма.

Бормашины уйдут в прошлое

Новый прорыв в медицинских технологиях, который готов случиться в стоматологии, затронет самые широкие массы населения. Из стоматологических клиник исчезнет самый большой страх пациентов – бормашина. Исследователи от медицины предоставляют новые технологии лечения кариеса – восстановление пораженных тканей из стволовых клеток. При введении в зуб желевидного белкового гидрогеля, созданного на их основе, он начинает преобразовываться в пульпу. Ученые утверждают, что стволовые клетки способны формировать зубные ткани не только в пораженных кариесом местах, но и полностью выращивать новые зубы.

Ежегодно наука открывает и испытывает множество новых методов и технологий в области медицины, многие из которых уже стали частью общедоступного здравоохранения. Немало их находится и в стадии разработки и испытаний, чтобы уже завтра помогать мировой медицине спасать человеческие жизни и неуклонно повышать ее качество.