Антигены бактерий. Антигены бактериальной клетки Антигены микробов

Антигенная структура микроорганизмов очень разнообразна. Антигены некоторых микробов, например сальмонелл, шигелл, эшерихий, изучены хорошо. Об антигенах других микроорганизмов данных пока недостаточно. У микроорганизмов различают общие, или групповые, и специфические, или типовые, антигены.

Групповые антигены являются общими для двух или более видов микробов, входящих в один род, а иногда относящихся и к разным родам. Так, общие групповые антигены имеются у отдельных типов рода сальмонелл; возбудители брюшного тифа имеют общие групповые антигены с возбудителями паратифа А и паратифа В (0—1,12).

Специфические антигены имеются только у данного вида микроба или даже только у определенного типа (варианта) либо подтипа внутри вида. Определение специфических антигенов позволяет дифференцировать микробы внутри рода, вида, подвида и даже типа (подтипа). Так, внутри рода сальмонелл по комбинации антигенов дифференцировано более 2000 типов сальмонелл, а у подвида шигелл Флекснера — 5 серотипов (серовариантов).

По локализации антигенов в микробной клетке различают соматические антигены, связанные с телом микробной клетки, капсульные — поверхностные, или оболочечные антигены и жгутиковые антигены, находящиеся в жгутиках.

Соматические, О-антигены (от нем. ohne Hauch — без дыхания), связаны с телом микробной клетки. У грамотрицательных бактерий О-антиген — сложный комплекс липидополисахаридно-белковой природы. Он высоко токсичен и является эндотоксином этих бактерий. У возбудителей кокковых инфекций, холерных вибрионов, возбудителей бруцеллеза, туберкулеза и некоторых анаэробов из тела микробных клеток выделены полисахаридные антигены, которые обусловливают типовую специфичность бактерий. Как антигены они могут быть активны в чистом виде и в комплексе с липидами.

Жгутиковые, Н-антигены (от нем. Hauch — дыхание), имеют белковую природу и находятся в жгутиках подвижных микробов. Жгутиковые антигены быстро разрушаются при нагревании и под действием фенола. Они хорошо сохраняются в присутствии формалина. Это свойство используют при изготовлении убитых диагностии кумов для реакции агглютинации, когда необходимо сохранить жгутики.

Капсульные, К - антигены, - расположены на поверхности микробной клетки и называются еще поверхностными, или оболочечными. Наиболее детально они изучены у микробов семейства кишечных, у которых различают Vi-, М-, В-, L- и А-антигены.

Важное значение из них имеет Vi-антиген. Впервые он был обнаружен в штаммах бактерий брюшного тифа, обладающих высокой вирулентностью, и получил название антигена вирулентности. При иммунизации человека комплексом О- и Vi- антигенов наблюдается высокая степень защиты против брюшного тифа. Vi-антиген разрушается при 60°С и менее токсичен, чем О-антиген. Он обнаружен и у других кишечных микробов, например у кишечной палочки.

Протективный (от лат. protectio — покровительство, защита), или защитный, антиген образуется сибиреязвенными микробами в организме животных и обнаруживается в различных экссудатах при заболевании сибирской язвой. Протективный антиген является частью экзотоксина, выделяемого микробом сибирской язвы, и способен вызывать выработку иммунитета. В ответ на введение этого антигена образуются комплементсвязывающие антитела. Протективный антиген можно получить при выращивании сибиреязвенного микроба на сложной синтетической среде. Из протективного антигена приготовлена высокоэффективная химическая вакцина против сибирской язвы. Защитные протективные антигены обнаружены также у возбудителей чумы, бруцеллеза, туляремии, коклюша.

Инфекционные антигены – это антигены бактерий, вирусов, грибов, простейших.

Существуют следующие разновидности бактериальных антигенов:

1) группоспецифические (встречаются у разных видов одного рода или семейства);

2) видоспецифические (встречаются у различных представителей одного вида);

3) типоспецифические (определяют серологические варианты – серовары, антигеновары – внутри одного вида).

В зависимости от локализации в бактериальной клетке различают:

1) О – АГ – полисахарид; входит в состав клеточной стенки бактерий. Определяет антигенную специфичность липополисахарида клеточной стенки; по нему различают сероварианты бактерий одного вида. О – АГ слабо иммуногенен. Он термостабилен (выдерживает кипячение в течение 1–2 ч), химически устойчив (выдерживает обработку формалином и этанолом);

2) липид А – гетеродимер; содержит глюкозамин и жирные кислоты. Он обладает сильной адьювантной, неспецифической иммуностимулирующей активностью и токсичностью;

3) Н – АГ; входит в состав бактериальных жгутиков, основа его – белок флагеллин. Термолабилен;

4) К – АГ – гетерогенная группа поверхностных, капсульных антигенов бактерий. Они находятся в капсуле и связаны с поверхностным слоем липополисахарида клеточной стенки;

5) токсины, нуклеопротеины, рибосомы и ферменты бактерий.

Антигены вирусов:

1) суперкапсидные антигены – поверхностные оболочечные;

2) белковые и гликопротеидные антигены;

3) капсидные – оболочечные;

4) нуклеопротеидные (сердцевинные) антигены.

Все вирусные антигены Т-зависимые.

Протективные антигены – это совокупность антигенных детерминант (эпитопов), которые вызывают наиболее сильный иммунный ответ, что предохраняет организм от повторного инфицирования данным возбудителем.

Пути проникновения инфекционных антигенов в организм:

1) через поврежденную и иногда неповрежденную кожу;

2) через слизистые оболочки носа, рта, ЖКТ, мочеполовых путей.

Гетероантигены – общие для представителей разных видов антигенные комплексы или общие антигенные детерминанты на различающихся по другим свойствам комплексах. За счет гетероантигенов могут возникать перекрестные иммунологические реакции.

У микробов различных видов и у человека встречаются общие, сходные по строению антигены. Эти явления называются антигенной мимикрией.

Суперантигены – это особая группа антигенов, которые в очень малых дозах вызывают поликлональную активацию и пролиферацию большого числа Т-лимфоцитов. Суперантигенами являются бактериальные энтеротоксины, стафилококковые, холерные токсины, некоторые вирусы (ротавирусы).

Вопрос 12

Вопрос 13

Вопрос 14

Антитела (иммуноглобулины , ИГ, Ig) - особый класс гликопротеинов, присутствующих на поверхности B-лимфоцитов в виде мембраносвязанных рецепторов и всыворотке крови и тканевой жидкости в виде растворимых молекул, и обладающих способностью очень избирательно связываться с конкретными видами молекул, которые в связи с этим называют антигенами. Антитела являются важнейшим фактором специфического гуморального иммунитета. Антитела используются иммунной системой для идентификации и нейтрализации чужеродных объектов - например, бактерий и вирусов. Антитела выполняют две функции: антиген -связывающую и эффекторную (вызывают тот или иной иммунный ответ, например, запускают классическую схему активации комплемента).

Антитела синтезируются плазматическими клетками, которыми становятся некоторые В-лимфоциты, в ответ на присутствие антигенов. Для каждого антигена формируются соответствующие ему специализировавшиеся плазматические клетки, вырабатывающие специфичные для этого антигена антитела. Антитела распознают антигены, связываясь с определённым эпитопом - характерным фрагментом поверхности или линейной аминокислотной цепи антигена.

Антитела состоят из двух лёгких цепей и двух тяжелых цепей. У млекопитающих выделяют пять классов антител (иммуноглобулинов) - IgG, IgA, IgM, IgD, IgE, различающихся между собой по строению и аминокислотному составу тяжёлых цепей и по выполняемым эффекторным функциям.

Антитела являются относительно крупными (~150 кДа - IgG) гликопротеинами, имеющими сложное строение. Состоят из двух идентичных тяжелых цепей (H-цепи, в свою очередь состоящие из V H , C Н 1, шарнира, C H 2- и C H 3-доменов) и из двух идентичныхлёгких цепей (L-цепей, состоящих из V L - и C L - доменов). К тяжелым цепям ковалентно присоединены олигосахариды. При помощи протеазы папаина антитела можно расщепить на два Fab (англ. fragment antigen binding - антиген-связывающий фрагмент) и одинFc (англ. fragment crystallizable - фрагмент, способный к кристаллизации). В зависимости от класса и исполняемых функций антитела могут существовать как в мономерной форме (IgG, IgD, IgE, сывороточный IgA), так и в олигомерной форме (димер-секреторный IgA, пентамер - IgM). Всего различают пять типов тяжелых цепей (α-, γ-, δ-, ε- и μ-цепи) и два типа легких цепей (κ-цепь и λ-цепь).

Антитела (иммуноглобулины) – это белки, которые синтезируются под влиянием антигена и специфически с ним реагируют.

Они состоят из полипептидных цепей. В молекуле иммуноглобулина различают четыре структуры:

1) первичную – это последовательность определенных аминокислот. Она строится из нуклеотидных триплетов, генетически детерминируется и определяет основные последующие структурные особенности;

2) вторичную (определяется конформацией полипептидных цепей);

3) третичную (определяет характер расположения отдельных участков цепи, создающих пространственную картину);

4) четвертичную. Из четырех полипептидных цепей возникает биологически активный комплекс. Цепи попарно имеют одинаковую структуру.

Большинство молекул иммуноглобулинов составлено из двух тяжелых (H) цепей и двух легких (L) цепей, соединенных дисульфидными связями. Легкие цепи состоят или из двух k-цепей, или из двух l-цепей. Тяжелые цепи могут быть одного из пяти классов (IgA, IgG, IgM, IgD и IgE).

Каждая цепь имеет два участка:

1) постоянный. Остается постоянным в последовательности аминокислот и антигенности в пределах данного класса иммуноглобулинов;

2) вариабельный. Характеризуется большой непостоянностью последовательности аминокислот; в этой части цепи происходит реакция соединения с антигеном.

Каждая молекула IgG состоит из двух соединенных цепей, концы которых формируют два антигенсвязывающих участка. На вариабельном участке каждой цепи имеются гипервариабельные участки: три в легких цепях и четыре в тяжелых. Разновидности последовательности аминокислот в этих гипервариабельных участках определяют специфичность антитела. При определенных условиях эти гипервариабельные области могут также выступать в роли антигенов (идиотипов).

В молекуле иммуноглобулина меньше двух антигенсвязывающих центров быть не может, но один может быть завернут внутрь молекулы – это неполное антитело. Оно блокирует антиген, и тот не может связаться с полными антителами.

При энзиматическом расщеплении иммуноглобулинов образуются следующие фрагменты:

1) Fc-фрагмент содержит участки обеих постоянных частей; не обладает свойством антитела, но имеет сродство с комплементом;

2) Fab-фрагмент содержит легкую и часть тяжелой цепи с одним антигенсвязывающим участком; обладает свойством антитела;

3) F(ab)Т2-фрагмент состоит из двух связанных между собой Fab-фрагментов.

Другие классы иммуноглобулинов имеют такую же основную структуру. Исключение – IgM: является пентамером (состоит из пяти основных единиц, связанных в области Fc-концов), а IgA – димер.

Отдельные структуры микро­организмов, экзо- и эндотоксины обладают свойством полноценных антигенов. Различают общие для родственных видов анти­гены - видовые и групповые, и антигены типоспецифические, свойственные определенному типу (варианту).

По расположению в микробной клетке различают антигены капсульные (у бактерий, образующих капсулы), поверхностные - антигены клеточной стенки (К-антигены), соматические (О-антигены) и жгутиковые (Н-антигены). Капсульные антигены лучше всего изучены у Е. coli. Различают несколько поверхностных ан­тигенов, входящих в состав К-антигена, которые обозначают ла­тинскими буквами А, В и L. А-антиген - капсульный, В- и L-антигены - поверхностные клеточной стенки, по химическому строе­нию представляют собой полисахариды и полипептиды.

Соматические О-антигены локализованы во внутреннем слое клеточной стенки и цитоплазматической мембране клетки и пред­ставляют собой липополисахаридо-полипептидный комплекс, об­ладающий специфичностью и иммуногенными свойствами. У грамотрицательных бактерий О-антиген является их эндотоксином. Соматический антиген термостабилен.

Жгутиковые Н-антигены присутствуют у всех подвижных бакте­рий. Это термолабильные белковые комплексы, обладающие у мно­гих энтеробактерий двумя наборами детерминант - специфической (первой) и неспецифической (второй или групповой) фазами.

Экзотоксины большинства микроорганизмов обладают свой­ствами полноценных антигенов с выраженной неоднородностью в пределах вида и рода. Антигенными свойствами обладают также споры: они содержат антиген, общий вегетативной клетке, и спо­ровой антиген.

Среди бактериальных антигенов выделяют так называемые защитные или протективные антигены. Антитела, синтезированные на эти антигены, защищают организм от заражения дан­ным микробом. Протективными свойствами обладают капсульные антигены пневмококков, М-протеин стрептококков, А-протеин стафилококков, экзотоксин сибиреязвенной бациллы, белковые молекулы внутренних слоев стенки некоторых грамотрицательных бактерий и др. Очищенные протективные антигены не обла­дают пирогенными и аллергезирующими свойствами. Установле­но, что в результате естественного отбора среди микробов возни­кают такие штаммы, у которых антигены сходны с антигенами организма человека и животных. При заражении такими микроба­ми иммунная система на них не реагирует, так как лимфоциты их не распознают. Например, у стрептококков есть антигены, общие с антигенами тканей млекопитающих животных, в этом случае при заражении возбудитель будет беспрепятственно размножаться в организме и обусловит его гибель.

Антигены некоторых микробов обладают адгезивными свой­ствами. Природа адгезивности во многом еще не ясна. Помимо связи с определенными антигенными структурами отмечают тако­вую с определенным набором ферментов (например, у холерного вибриона нейраминидазы, глалуронидазы).



Все антигены (природные и искусственные) состоят из двух компонентов. Один из них представлен высокомолекулярным коллоидным веществом (белком), что определяет его антигенные свойства. Другой компонент состоит из аминокислотных остат­ков, полисахаридов или липидов, расположенных на поверхности белка. Он определяет специфичность антигена и называется детерминантной группой. Таким образом, в качестве детерминант-ной группы функционирует не вся молекула антигена, а только ее сравнительно небольшая часть, которая непосредственно реагиру­ет с антителом. На поверхности антигена обычно располагается несколько детерминантных групп, обладающих одинаковой или близкой специфичностью, что обусловливает поливалентность антигена. Изучение специфичности антигенов и природы детер­минантных групп имеет важное теоретическое и практическое значение. Изменяя детерминантную группу антигена, можно це­ленаправленно изменить его специфичность, т. е. конструировать искусственные антигены с новой иммунохимической специфич­ностью.

Общие антигены у представителей различных видов микробов, животных и растений называют гетерогенными. Например, гетеро­генный антиген Форсмана содержится в органах морской свинки, в эритроцитах барана и у сальмонелл. Гетерогенные антигены со­стоят из белков, липидов и углеводов; липиды и углеводы обус­ловливают их специфичность. Гетерогенные антигены отличаются друг от друга по своему химическому составу.

Существование общих гетероантигенов у животных и парази­тирующих в их организме микробов можно рассматривать как приспособление разных патогенных микробов к существованию в организме за счет общих антигенов. В результате подобной маски­ровки организм недостаточно активно отвечает на инфекцию, вызванную патогенными агентами, вследствие чего он остается перед ними незащищенным.


Существуют следующие разновидности бактериальных антигенов: группоспецифические (встречаются у разных видов одного рода или семейства); видоспецифические (встречаются у различных представителей одного вида); типоспецифические (определяют серологические варианты – серовары).

В зависимости от локализации в бактериальной клетке различают:

1) жгутиковые Н-АГ, локализуются в жгутиках у бактерий, основа его белок флагеллин, термолабилен;

2) соматический О-АГ связан с клеточной стенкой бактерий. Его основу составляют ЛПС, по нему различают сероварианты бактерий одного вида. Он термостабилен, не разрушается при длительном кипячении, химически устойчив (выдерживает обработку формалином и этанолом);

3) капсульные К-АГ располагаются на поверхности клеточной стенки. По чувствительности к нагреванию различают 3 типа К-АГ: А, В, L. Наибольшая термостабильность характерна для типа А, тип В выдерживает нагревание до 60 0 С в течение 1 часа, тип L быстро разрушается при этой температуре. На поверхности возбудителя брюшного тифа и др.энтеробактерий, которые обладают высокой вирулентностью можно обнаружить особый вариант капсульного АГ –Vi-антиген;

4) антигенными свойствами обладают также бактериальные белковые токсины, ферменты и некоторые др. белки.

Антигены вирусов:

1) суперкапсидные АГ – поверхностные оболочечные;

2) белковые и гликопротеидные АГ;

3) капсидные – оболочечные;

4) нуклеопротеидные (сердцевидные) АГ.

9.5. Антитела и антителообразование: первичный и вторичный ответ. Оценка иммунного статуса: основные показатели и методы их определения».

Антитела – это гамма-глобулины, вырабатываемые в ответ на введение антигена, способные специфически связываться с антигеном и участвовать во многих иммунологических реакциях. Они состоят из полипептидных цепей: двух тяжелых (Н) цепей и двух легких (L). Тяжелые и легкие цепи связаны между собой попарно дисульфидными связями. Между тяжелыми цепями также есть дисульфидная связь, так называемый «шарнирный» участок, который ответствен за взаимодействие с первым компонентом комплемента С1 и активацию его по классическому пути. Легкие цепи бывают 2типов (каппа и лямбда), а тяжелые – 5типов (альфа, гамма, мю, эпсилон и дельта). Вторичная структура полипептидных цепей молекулы Ig обладает доменным строением. Это означает, что отдельные участки цепи свернуты в глобулы (домены). Выделяют С-домены- с постоянной структурой полипептидной цепи и V-домены (вариабельные с переменной структурой). Вариабельные домены легкой и тяжелой цепи совместно образуют участок, который специфически связывается с антигеном. Это антигенсвязывающий центр молекулы Ig, или паротоп. При ферментативном гидролизе Ig образуется три фрагмента. Два из них способны специфически связываться с антигеном и получили название Fab-фрагменты, связывающиеся с антигеном. Третий фрагмент, способный образовывать кристаллы, получил название Fc. Он ответствен за связывание с рецепторами на мембране клеток макроорганизма. В структуре молекул Ig обнаруживают дополнительные полипептидные цепи. Так, полимерные молекулы IgМ и IgА содержат J- пептид, который обеспечивает превращение полимерного Ig в секреторную форму. Молекулы секреторных Ig в отличие от сывороточных, обладают особым S- пептидом, называемым секреторным компонентом. Он обеспечивает перенос молекулы Ig через эпителиальную клетку в просвет органа и предохраняет ее в секрете слизистых от ферментативного расщепления. Рецепторный Ig, который локализуется на цитоплазматической мембране В-лимфоцитов, имеет дополнительный гидрофобный трансмембранный М-пептид.

Существует 5 классов иммуноглобулинов у человека:

1) иммуноглобулин класса G – это мономер, включающий в себя 4 субкласса (IgG1, IgG2, IgG3, IgG4), которые отличаются друг от друга по аминокислотному составу и антигенным свойствам, имеет 2 антигенсвязывающих центра. На долю его приходится 70-80% всех сывороточных Ig. Период полураспада 21 день. К основным свойствам IgG относятся: играют основополагающую роль в гуморальном иммунитете при инфекционных заболеваниях; проникает через плаценту и формирует антиинфекционный иммунитет у новорожденных; способны нейтрализовать бактериальные экзотоксины, связывать комплемент, участвовать в реакции преципитации. Хорошо определяется в сыворотке крови на пике первичного и при вторичном иммунном ответе. IgG4 участвует в развитии аллергической реакции 1 типа.

2) иммуноглобулин класса М – пентамер, который имеет 10 антигенсвязывающих центров. Период полураспада 5 дней. На его долю приходится около 5-10% всех сывороточных Ig. Образуется в начале первичного иммунного ответа, также первым начинает синтезироваться в организме новорожденного – определяется уже на 20-й неделе внутриутробного развития. Свойства: не проникает через плаценту; появляется у плода и участвует в антиинфекционной защите; способны агглютинировать бактерии, нейтрализовать вирусы, активировать комплемент; играют важную роль в элиминации возбудителя из кровеносного русла, активации фагоцитоза; образуются на ранних сроках инфекционного процесса; отличаются высокой активностью в реакциях агглютинации, лизиса и связывания эндотоксинов грамотрицательных бактерий.

3) иммуноглобулин класса А – существует в сывороточной и секреторной формах. На долю сывороточного Ig приходится 10-15%, мономер, имеет 2 антигенсвязывающих центра, период полураспада 6 дней. Секреторный Ig существует в полимерной форме. Содержатся в молоке, молозиве, слюне, слезном, бронхиальном, желудочно-кишечном секрете, желчи, моче; участвуют в местном иммунитете, препятствуют прикреплению бактерий к слизистой, нейтрализуют энтеротоксин, активируют фагоцитоз и комплемент.

4) иммуноглобулин класса Е- мономеры, на долю которых приходится 0,002%. К этому классу относится основная масса аллергических антител – реагинов. Уровень IgЕ значительно повышается у людей, страдающих аллергией и зараженных гельминтами.

5) иммуноглобулин класса Д – это мономер, на долю которого приходится 0,2%. Плазматические клетки, секретирующие IgД локализуются преимущественно в миндалинах и аденоидной ткани. Участвует в развитии местного иммунитета, обладает антивирусной активностью, в редких случаях активирует комплемент, участвует в дифференцеровке В-клеток, способствуют развитию антиидиотипического ответа, участвует в аутоиммунных процессах.

Способность синтезировать АТ макроорганизм приобретает довольно рано. Уже на 13 неделе эмбрионального периода развития возникают В-лимфоциты, синтезирующие IgМ, а на 20 неделе этот Ig можно определить в сыворотке крови. Концентрация антител достигает максимума к периоду полового созревания и сохраняется на высоких цифрах в течение всего репродуктивного периода. В старческом возрасте содержание антител снижается. Повышение количества Ig наблюдается при инфекционных заболеваниях, аутоиммунных расстройствах, снижение его отмечено при некоторых опухолях и иммунодефицитных состояниях. Антителопродукция в ответ на антигенный стимул имеет характерную динамику. Выделяют латентную, логарифмическую, стационарную фазы и фазу снижения. В латентную фазу антителопродукция практически не изменяется и остается на базальном уровне. Во время логарифмической фазы наблюдается интенсивный прирост количества антиген-специфичных В-лимфоцитов и происходит нарастание титра АТ. В стационарной фазе количество специфических антител и синтезирующих их клеток достигает максимума и стабилизируется. В фазе снижения наблюдается постепенное уменьшение титров антител. При первичном контакте с антигеном развивается первичный иммунный ответ. Для него характерны длительная латентная (3-5 суток) и логарифмическая (7-15 суток) фазы. Первые диагностически значимые титры антител регистрируются на 10-14-е сутки от момента иммунизации. Стационарная фаза продолжается 15-30 суток, а фаза снижения – 1-6 месяцев. В итоге первичного иммунного реагирования формируются многочисленные клоны антигенспецифичных В-лимфоцитов: антителопродуцирующих клеток и В-лимфоцитов иммунологической памяти, а во внутренней среде макроорганизма в высоком титре накапливаются IgG и/или IgА (а также IgЕ). Со временем антительный ответ угасает. Повторный контакт иммунной системы с тем же антигеном ведет к формированию вторичного иммунного ответа . Для вторичного ответа характерна укороченная латентная фаза (от нескольких часов до 1-2 суток). Логарифмическая фаза отличается более интенсивной динамикой прироста и более высокими титрами специфических антител. При вторичном иммунном ответе организм сразу же, в подавляющем большинстве синтезирует IgG. Характерная динамика антителопродукции обусловлена подготовленностью иммунной системы к повторной встрече с антигеном за счет формирования иммунологической памяти.

Явление интенсивного антителообразования при повторном контакте с антигеном широко используется в практических целях, например при вакцинопрофилактике. Для создания и поддержания иммунитета на высоком защитном уровне схемы вакцинации предусматривают первичное введение антигена для формирования иммунологической памяти и последующие ревакцинации через различные интервалы времени.

Этот же феномен используют при получении высокоактивных лечебных и диагностических иммунных сывороток (гипериммунных). Для этого животным или донорам производят многократные введения препаратов антигена по специальной схеме.

Иммунный статус – это структурное и функциональное состояние иммунной системы индивидуума, определяемое комплексом клинических и лабораторных иммунологических показателей.

На иммунный статус оказывают влияние следующие факторы: 1) климато-географические (температура, влажность, солнечная радиация, длина светового дня); 2) социальные (питание, жилищно-бытовые условия, профессиональные вредности); 3) экологические (загрязнение окружающей среды радиоактивными веществами, применение пестицидов в сельском хозяйстве); 4) влияние диагностических и лечебных манипуляций, лекарственная терапия; 5) стресс.

Иммунный статус можно определить путем постановки комплекса лабораторных тестов, включающих оценку состояния факторов неспецифической резистентности, гуморального (В) и клеточного (Т) иммунитета. Оценка иммунного статуса проводится в клинике при трансплантации органов и тканей, аутоиммунных заболеваниях, аллергиях, для контроля эффективности лечения болезней, связанных с нарушением иммунной системы. Оценка иммунного статуса чаще всего базируется на определении следующих показателей:

1) общего клинического обследования (жалобы больного, профессия, осмотр);

2) состояния факторов естественной резистентности (определяют фагоцитоз, комплемент, интерфероновый статус, колонизационную резистентность);

3) гуморального иммунитета (определение иммуноглобулинов класса G, М, А, Д, Е в сыворотке крови);

4) клеточного иммунитета (оценивается по количеству Т-лимфоцитов – реакция розеткообразования, определение соотношения хелперов и супрессоров Т4 и Т8 лимфоцитов, которое в норме составляет примерно 2);

5) дополнительных тестов (определение бактерицидности сыворотки крови, титрование С3, С4 компонентов комплемента, определение содержания С-реактивного белка в сыворотке крови, определение ревматоидных факторов.

Каждый микроорганизм, как бы примитивно он ни был устроен, содержит несколько антигенов. Чем сложнее его структура, тем больше антигенов можно обнаружить в его составе.

У различных микроорганизмов, принадлежащих к одним и тем же систематическим категориям, различают группоспецифические антигены - встречаются у разных видов одного и того же рода или семейства, видоспецифические - у различных представителей одного вида и типоспецифические (вариантные) антигены - у разных вариантов в пределах одного и того же вида. Последние подразделяют на серологические варианты, или серовары. Среди бактериальных антигенов различают Н, О, К и др.

Жгутиковые Н-антигены. Как видно из названия, эти антигены входят в состав бактериальных жгутиков. Н-антнген представляет собой белок флагеллин. Он разрушается при нагревании, а после обработки фенолом сохраняет свои антигенные свойства.

Соматический О-антиген. Ранее полагали, что О-антиген заключен в содержимом клетки, ее соме, поэтому и назвали его соматическим антигеном. Впоследствии оказалось, что этот антиген связан с бактериальной клеточной стенкой.

О-антиген грамотрицательных бактерий связан с ЛПС клеточной стенки. Детерминантными группами этого слижного комплексного антигена являются концевые повторяющиеся звенья полисахаридных цепей, просоединенные к ее основной части. Состав Сахаров в детерминантных группах, так же как и их число, у разных бактерий неодинаков. Чаще всего в них содержатся гексозы (галактоза, глюкоза, рамноза и др.), аминосахар (М-ацетилглюкозамин). О-антиген термистабилен: сохраняется при кипячении в течение 1-2 ч, не разрушается после обработки формалином и этанолом. При иммунизации животных живыми культурами, имеющими жгутики, образуются антитела к О- и Н-антигенам, а при иммунизации кипяченой культурой образуются антитела только к О-антнгену.

К-антигены (капсульные). Эти антигены хорошо изучены у эшерихий и сальмонелл. Они, так же как О-антигены, тесно связаны с ЛПС клеточной стенки и капсулой, но в отличие от О-антигена содержат главным образом кислые нолисахариды: глюкуроновую, галактуроновую и другие уроновые кислоты. По чувствительнсти к температуре К-антигены подразделяют на А-, В- и L-антигены. Наиболее термостабильными являются А-антигены, выдерживающие кипячение более 2 ч. В-антигены выдерживают нагревание при температуре 60°С в течение часа, а L-антигены разрушаются при нагревании до 60°С.

К-антигены располагаются более поверхностно, чем О-антигены, и часто маскируют последние. Поэтому для выявления О-антигенов необходимо предварительно разрушить К-антигены, что достигается кипячением культур. К капсульным антигенам относится так называемый Vi-антиген. Он обнаружен у брюшнотифозных и некоторых других энтеробактерий, обладающих высокой вирулентностью, в связи с чем данный антиген получил название антигена вирулентности.

Капсульные антигены полисахаридной природы выявлены у пневмококков, клебсиелл и других бактерий, образующих выраженную капсулу. В отличие от группоспецифических О-антигенов они часто характеризуют антигенные особенности определенных штаммов (вариантов) данного вида, которые на этом основании подразделяются на серовары. У сибиреязвенных бацилл капсульный антиген состоит из полипептидов.

Антигены бактериальных токсинов. Токсины бактерий обладают полноценными антигенными свойствами в том случае, если они являются растворимыми соединениями белковой природы.

Ферменты, продуцируемые бактериями, в том числе факторы патогенности, обладают свойствами полноценных антигенов.

Протективные антигены. Впервые обнаружены в экссудате пораженной ткани при сибирской язве. Они обладают сильно выраженными антигенными свойствами, обеспечивающими иммунитет к соответствующему инфекционному агенту. Протективные антигены образуют и некоторые другие микроорганизмы при попадании в организм хозяина, хотя эти антигены не являются их постоянными компонентами.

Антигены вирусов. В каждом вирионе любого вируса содержатся различные антигены. Одни из них являются вирусспецифически-ми. В состав других антигенов входят компоненты клетки хозяина (липиды, углеводы), которые включаются в его внешнюю оболочку. Антигены простых вирионов связаны с их нуклеокапсидами. По своему химическому составу они принадлежат к рибонуклеопротеидам или дезоксирибонуклеопротеидам, которые являются растворимыми соединениями и поэтому обозначаются как S-антигены (solutio-раствор). У сложноорганизованных вирионов одни антигенные компоненты связаны с нуклеокапсидами, другие - с гликопротеидами внешней оболочки. Многие простые и сложные вирионы содержат особые поверхностные V-антигены - гемагглютинин и фермент нейраминидазу. Антигенная специфичность гемагглютинина у разных вирусов неодинакова. Данный антиген выявляется в реакции гемагглютинации или ее разновидности - реакции гемадсорбции. Другая особенность гемагглютинина проявляется в антигенной функции вызывать образование антител - антигемашпотининов и вступать с ними в реакцию торможения гемагглютинации (РТГА).

Вирусные антигены могут быть группоспецифическими, если они обнаруживаются у разных видов одного и того же рода или семейства, и типоспецифическими, присущими отдельным штаммам одного и того же вида. Эти различия учитываются при идентификации вирусов.

Наряду с перечисленными антигенами в составе вирусных частиц могут присутствовать антигены клетки хозяина. Так, например, вирус гриппа, выращенный на аллантоисной оболочке куриного эмбриона, реагирует с антисывороткой, полученной к аллантоисной жидкости. Этот же вирус, взятый из легких инфицированных мышей, реагирует с антисывороткой к легким данных животных и не реагирует с антисывороткой к аллантоисной жидкости.

Гетерогенные антигены (гетероантигены). Общие антигены, обнаруженные у представителей различных видов микроорганизмов, животных и растений, называют гетерогенными. Например, гетерогенный антиген Форсмана содержится в белковых структурах органов морской свинки, в эритроцитах барана и сальмонеллах.