Пульсоксиметрия. Безопасен ли метод. Пульсоксиметр ТМ "Армед": основные характеристики

Сатурацию можно определить при помощи клинического анализа после забора крови или используя пульсоксиметр. Это специальное измерительное устройство, которое крепится на мочку уха или подушечку пальца и уже в первые секунды выдает результат. Если полученные характеристики отличаются от нормального по возрасту уровня, требуется дополнительное медицинское обследование. Несоответствующие показатели транспортировки крови могут говорить об инфаркте миокарда, анемии и других серьезных недугах. Именно поэтому так важно знать нормы O2 по возрастам.

Уровень насыщения у взрослых

Когда рассматривается сатурация кислорода в крови, норма у взрослых ставится в качестве идеального показателя. Она составляет от 96 до 98%. Стопроцентного насыщения гемоглобина, который отвечает за перемещение кислорода, этим веществом не может быть, поскольку при прохождении через дыхательные пути часть полученного воздуха отсеивается. Крайняя граница адекватного состояния для взрослых – 95%. По рекомендациям Всемирной Организации Здравоохранения, изложенным в специальном документе о пульсоксиметрии, в случае установления уровня 94% и ниже требуется срочное обследование человека на предмет гиповентиляции легких, анемии и сердечных заболеваний.

Норма может быть снижена у курильщиков. Взрослые индивиды, постоянно курящие табак, подвергаются серьезному снижению транспортировки кислорода: процент доходит до 92 и в максимальном положении составляет не более 95. Табачный дым, а также испарения других веществ, препятствуют легким при сборе вещества. Они не позволяют уже прошедшим к сосудам частицам соединиться с эритроцитами, которые должны их перевозить.

Поводом к постоянному снижению процентного показателя может быть хроническая гиповентиляция легких. При недостаточной вентиляции легочного отдела в организм просто не поступает достаточное количество кислорода. Гемоглобину становится нечем насыщаться. Процент у пациентов с дыхательными проблемами колеблется от 90 до 95%.

Поводом обращения к врачу у взрослого, некурящего человека без дыхательных проблем является понижение уровня даже на 1%.

При этом нужно учитывать, что точный показатель выдает только клиническое исследование с забором крови. Погрешность при измерении внешним пульсоксиметром составляет около 1%.

Вентиляция сосудов у детей

В детском организме понижен по сравнению с нормой уровень гемоглобина – вещества, отвечающего за транспортировку кислорода по кровеносной системе. Это распространенное отклонение, вызванное тем, что железо в еще не развитом теле надолго не задерживается. Без железистых соединений не накапливается необходимое количество данного транспортировочного вещества. Поэтому для малышей нет четких границ правильного уровня сатурации кислорода в крови: норма у детей – лишь средний показатель, от которого допустимы отклонения.

При рождении показатель самый низкий. Дыхательная система малыша еще не работает в полную силу, ослабленным детям необходимы поддерживающие вентиляционные устройства. Как раз поэтому, если обсуждается сатурация кислорода в крови, норма у новорожденных не измеряется теми же процентами, что и у взрослых. Хотя по результатам исследований ВОЖ установлено, что оптимальное содержание для всех возрастов – не менее 95%, едва появившиеся на свет малыши могут опровергать это сниженным содержанием воздуха в своих сосудах. После рождения оно колеблется от 92 до 95%. При этом у малыша не обязательно наблюдаются травмы или заболевания легких или кровеносной системы.

По мере взросления количество гемоглобина в крови приходит в норму, а вместе с ним перестает скакать и сатурация. У детей старше нескольких месяцев адекватный уровень начинается с 95%. Это на 1% ниже, чем у полностью развитого организма.

Особенности насыщения у недоношенных младенцев

Дети, которые появились на свет раньше срока, практически сразу ставятся на обеспечение ИВЛ. Он поддерживает правильный темп и глубину дыхания, оптимально насыщает легкие воздухом. Поэтому измерить собственный уровень 02 у такого младенца тяжело.

Детская сатурация кислорода в крови и ее норма у недоношенных малышей была выявлена экспериментальным путем около полувека назад. Некоторых недоношенных ненадолго, без вреда для здоровья, отключали от дыхательного аппарата. Более половины детей в течение первых часов после отнятия от устройства показывали нормальный уровень – 95-96%.

Однако по мере прохождения времени лишь 16% остались с прежними показателями. Оставшиеся снизили их до 92%, а в особо тяжелых случаях – до 83%. Последняя отметка может свидетельствовать о пороках, несовместимых с жизнью. При таком показателе требуется постоянное использование ИВЛ вплоть до выписки врача.

Чем раньше был рожден ребенок, тем слабее у него развиты дыхательные пути и тем меньше показатель насыщения кислородом. ИВЛ полностью компенсирует недостаток, сводя на нет риски гиповентиляции различных тканей и органов детей: мозга, нервной системы, сердца. Это устраняет вероятность проблем в умственном и физическом развитии.

Особые случаи вентиляции

В особых ситуациях тело человека физически не может насытить само себя достаточным уровнем воздуха либо слишком быстро его теряет. Состояния могут быть следующие:

  • беременность;
  • потеря крови;
  • недостаток железа в организме.

Снижение сатурации – это еще и первый признак, говорящий о наличии большой кровопотери. По уровню сатурации в медицинских учреждениях выявляют, насколько опасно положение пациента. Вместе с кровью организм утрачивает и необходимые для транспортировки эритроциты, что неблагоприятно сказывается на насыщении сосудов, и оно доходит иногда до 90%.

Недостаток железа – следствие кровопотери или неправильного питания. Без него гемоглобин не обладает должной цепкостью, не может захватить достаточно 02. Изменение процентов зависит от степени недостатка железа.

Отклонения при беременности связаны с уменьшением рабочей поверхности легких. Плод давит на легочные мешки, сокращая всасывание кислорода до 92-95%.

Простое измерение сатурации пульсоксиметром может спасти пациенту жизнь. Обнаружение отклонений от нормы должно обязательно заканчиваться посещением врача. В организме может крыться серьезный недуг, о котором на ранних стадиях говорит лишь транспортировка кислорода.

Добрый день, всем, кто читает!

Для людей, которые болеют сердечно-сосудистыми заболеваниями или заболеваниями легких, такой прибор в домашней аптечке необходим для того чтоб при необходимости измерить уровень сатурации кислородом капиллярной крови.


Что такое пульсоксиметр?

Пульсоксиметр – это современный контрольно-диагностический медицинский прибор, предназначенный для измерения насыщения гемоглобина артериальной капиллярной крови кислородом (сатурации). Сердечно-сосудистая система и легкие человека беспрерывно работают с одной целью – насытить кислородом артериальную кровь. Есть ряд заболеваний, сопровождающихся хроническим недостатком кислорода (гипоксией), при которых этот показатель требует постоянного контроля и достоверных данных, неполучение которых значительно усложняет лечение.
Если не вдаваться в «дебри медицины», то простыми словами можно сказать, что это прибор показывает уровень кислорода в нашей крови - и измеряет он Сатурацию.
Сатурация - обозначает, какой процент кислорода содержится в нашей крови.

Как работает пульсоксиметр?


Приобрести данный прибор мне посоветовала аллерголог, т.к. у сына частые обструктивные бронхиты и контролировать состояние с прибором легче, чем считать кол-во вдохов (кто сталкивался с обструкцией у маленьких детей тот меня поймет). Ссылку на прибор мне скинула подружка, которая приобрела его давно для мамы и точность была проверена. А точность, очень важна в этом деле.
Упакован прибор в картонную коробочку. Она при пересылке пострадала немного, но прибор цел и невредим.


В комплекте с пульсоксиметром: батарейки мини пальчики, инструкция по эксплуатации, шнурок.


Инструкция на английском языке




Шнурок. С его помощью можно повесить прибор на шею и на руку, чтобы не потерять его.


Прибор похож на прищепку.




На задней панели, есть отсек для батареек


Включается нажатием на кнопку, которая расположена на лицевой панели.
После включения необходимо подождать несколько секунд, пока прибор закончит самотестирование


Затем вставить палец внутрь, подушечкой пальца попадая на датчик.


Датчик должен закрепляться на пальце так, чтобы фиксация была надежной, а излишнее давление отсутствовало. Ноготь пальца, должен быть чистым, без лака – его наличие искажает результаты. Далее нужно подождать от 5 до 20 секунд, и пульсоксиметр выведет на дисплей данные по сатурации и пульсу.


Как видно по правой картинке, у ребенка все хорошо. Результаты: процент кислорода в крови SpO2%- 98 %, пульс -102 удара в минуту.
Нормой считаются показали SpO2% от 95% до 99%. Если показатель ниже граничного падает, значит даю сыну необходимые препараты.
Однажды довелось сравнить показания моего прибора, с прибором который используют в скорой помощи. При первом измерении погрешность была 1%, по второму измерению показало одинаковый результат.
Благодаря настройкам прибора, можно установить удобный режим просмотра результатов. Во время проведения измерения, каждое короткое нажатие белой кнопки будет переводить в следующий режим отображения экрана.






Так же в приборе можно уставить настройки:
-Звуковой сигнал, при результате выше или ниже нормы.
-Включить/отключить индикатор амплитуды пульса.
-Установить верхний и нижний порог измерений



По итогу хочу написать плюсы и минусы этой модели.
Плюсы:
Компактность
Возможность заранее определить начинающуюся гипоксию + отслеживать частоту пульса.
Точность прибора
Возможность развернуть экран с измерением результатов, в удобное положение.
Звуковой сигнал при критичных результатах, что очень удобно ночью.
Минусы:
Очень жаль, что в этой модели нет чехла.
На этом все, благодарю за внимание!

Планирую купить +33 Добавить в избранное Обзор понравился +32 +65

Пульсоксиметрией является метод обнаружения уровня концентрации в крови кислорода без инвазивного проникновения. Подобный способ основывается на возможностях различных видов гемоглобина (оксигемоглобин, карбоксигемоглобин) с различной интенсивностью поглотить излучение с конкретной длинной волны.

  • Уровень поглощения варьируется от числа находящегося в крови оксигемоглобина – чем он выше, тем выше уровень поглощения.
  • Компьютерная пульсоксиметрия представляет собой способ продолжительной диагностики процентного соотношения оксигемоглобина в артериальной крови (сатурации) и пульса.
  • В комплексе с выявлением концентрации в крови кислорода процедура дает возможность измерить частоту пульса и оценить колебания пульсовой волны.
  • Данный метод используется как стационарно , так и амбулаторно. Известно несколько разнообразных модификаций пульсоксиметра – устройства, при помощи которого определяется сатурация. Их различает размер и внешний дизайн, но основные функции в приборах неизменны – фиксация сатурации и частоты пульса.

Сейчас пульсоксиметрия считается наиболее доступным и комфортным способом отслеживания состояния пациентов, как стационарно, так и амбулаторно, а модуль пульсоксиметрии встраивают во всевозможные современные мониторы. Данный способ также отличается высокой точностью результата, правда существуют ошибки при пульсоксиметрии, вызванные, в большинстве случаев, движением пациента.

Разновидности

Сейчас используются 2 вида данной процедуры:

  1. Трансмиссионная.
  2. Отраженная.
  • В процессе трансмиссионной – поток света просачивается через ткани, потому чтобы получить показатели сатурации излучатель и датчик необходимо установить на противоположных сторонах, между которыми – ткань. В целях комфорта осуществления диагностики, датчики накладываются на маленькие участки – пальцы, нос, уши.
  • Отраженная пульсоксиметрия являет собой фиксацию потока света , непоглощаемого оксигемоглобином и отражаемого от тканей. Данная методика удобна для использования на разнообразных местах, где датчики установить на противоположных сторонах не представляется возможным или дистанция между ними очень большая для фиксации потоков света – живот, лицо, плечи, предплечья.
  • Вероятность выбрать место диагностики предоставляет достаточную привилегию такого вида процедуры, хоть точность и количество информации 2 методов приблизительно равна.
  • Неинвазивная пульсоксиметрия характеризуется определенными недостатками, включая - перемены в функционировании при ярком свете, передвигающихся объектов, наличии красителей, надобности точного расположения датчиков.
  • Ошибки при показаниях бывают сопряжены с ненадлежащей установкой прибора, шоком, снижением объема крови у больного, в случае если устройство не улавливает пульс. При отравлении СО наблюдается 100% сатурация, а гемоглобин насыщается не кислородом, а угарным газом.

Пульсоксиметры – какие бывают?

Пульсоксиметр является устройством замера кислорода в крови.

Методика, которая применяется в таких приборах, довольно трудна и основана на 2 правилах:

  1. изменение уровня поглощения световых волн гемоглобином зависимо от степени концентрации в крови кислорода;
  2. пульсация потока света сквозь русло артерии во время сердцебиения.

Сейчас различаются следующие т
ипы пульсоксиметров:

  • Стационарные. Часто используются в разнообразных медицинских учреждениях, обладают большим объемом памяти, подключаются к центральной станции диагностики. Оснащаются множеством датчиков, и применяются по отношению к больным различных возрастов.
  • Напалечные. Самые распространенные модели – напалечные либо портативные пульсоксиметры (в них сочетается маленький вес, но в то же время их размеры дают возможность конкурировать со стационарными устройствами).

Напалечный пульсоксиметр включает в себя датчик и блок. Датчик надевается на палец (бывает в качестве единоразовой наклейки либо чехла, отсылают высококачественный сигнал, но иногда оказывают чрезмерное давление). Существуют датчики, крепящиеся на ушную раковину (по виду напоминает прищепку).

Для приобретения такого прибора необходимо тут же осуществить примерку. Прибор с прищепкой часто применяется для одноразового замера, либо в целях проделывания кратковременных тестов. При выборе портативного устройства следует сделать акцент на энергетических требованиях пульсоксиметра и его прочностных характеристиках.

  1. Эконом обладает необходимым набором опций: измеряется сатурация, частота сокращений сердца, в наличие пульс–бар и график плезиограммы, показывающей силу сердечных выбросов.
  2. Стандарт характеризуется помимо основных опций еще и функцией пульсового тона, тревожной сигнализацией. Используя их возможно значительно подробнее наблюдать какое состояние сейчас у пациента.
  3. Премиум оснащаются обычными опциями и специфическими: при помощи тревожной сигнализации регулируются пороги сбрасывания, аудио, визуальный и вибро режимы, их настройка. Подобные устройства обладают большой по объему оперативной памятью, вмещают в себя показатели 99 пациентов. Все они при необходимости переносятся в компьютер в целях последующей работы.
  • Поясные . Являются довольно популярной моделью. Не зависят от источника питания (в связи с небольшими габаритами и небольшой затратой энергии). Большие объемы памяти способствуют сохранению данных, для дальнейшей расшифровки специалистами.
    Удобство в том, что подобное устройство характеризуется вмонтированной тревожной сигнализацией, предупреждающей больного о том, что полученные показатели превысили допустимые пределы. Подобные приборы дают возможность перенести полученные сведения в ПК в целях дальнейшей диагностики.
  • Мониторы сна. Применяются во время осуществления продолжительной оксиметрии. Устройство характеризуется дискретностью в несколько раз за секунду, показания могут записываться в целях дальнейших исследований.
    Дыхательная недостаточность целесообразнее всего выявлять во время сна. Подобный метод исследования дает возможность поставить точный диагноз и рекомендовать надлежащую терапию.

Область применения пульсоксиметрии


Вердикт о том, что необходима диагностика принимается лечащим врачом.

Описание проведения процедуры

Монтировать датчик возможно и своими силами, соблюдая инструкцию.

Алгоритм пульсоксиметрии таков:

  1. Устройство надевается на палец в период приготовления ко сну. Фиксатор располагается сверху ногтевой пластины.
  2. Конец верхней фаланги пальца не может быть выше предела фиксатора.
  3. Когда устройство установлено , сразу же заработает оксиметр. В течение 20 секунд осуществляется диагностика степени концентрации кислородом, затем показатели выводятся на монитор. Обозначается в процентах, тут же находятся сведения о пульсе.
  4. После необходимо ложиться спать . Сведения будут записываться без перерыва на протяжении 16 часов. Когда пациент проснется, устройство следует выключить, а затем его отдают специалистам для последующей расшифровки результатов.

Замерять следует в помещении, где нет яркого света, пациент, которому осуществляется пульсоксиметрия, расположен в неподвижном положении.

Устройство следует подсоединить в электрическую сеть, автономный прибор должен быть полностью заряжен, когда прибор функционирует на батарейках, нужно акцентировать внимание на индикаторе заряда, определенные устройства сами по себе могут включаться и выключаться во время надевания и снятия.

Датчики пульсоксиметрии монтируют на определенный участок тела, и следует выждать несколько секунд для выведения сведений, отображаемых на мониторе в качестве числовых значений. Определенные приборы показывают гистограмму интенсивности пульса.

Когда готовые показания колеблются в большом диапазоне, к примеру, от 75% до 90%, то точность сведений будет сомнительна, следует проверить уровень насыщенности крови кислородом, используя клинические способы:

  1. до применения автономного устройства следует полностью зарядить его аккумулятор от бытовой электрической сети;
  2. нужно не забывать, что как только устройство включится, то начнет осуществлять внутреннюю самодиагностику и будет готов к процедуре спустя конкретный период времени;
  3. показания станут значительно точнее если будут соответствовать габариты датчика и того участка туловища, к которому подсоединяется – непосредственно чтобы соблюдать такие правила выпускают пульсоксиметры для детей;
  4. во время монтажа датчика необходимо не допускать излишнее давление на тот участок тела, который выбран для замера;
  5. точные показания могут появиться на мониторе с задержкой, спустя конкретный период времени;
  6. когда данные при замерах начинают «плавать», нужно использовать второе устройство и сравнить показатели.

ОТЗЫВ НАШЕЙ ЧИТАТЕЛЬНИЦЫ!

Проводить компьютерную пульсоксиметрию в период сна рекомендовано больным, страдающим болезнями, во время которых распространенность дыхательных нарушений достигает 30-50%:

  • Ожирение второй степени и больше (индекс массы тела более 35);
  • Повышенное артериальное давление второй степени и больше (в частности, ночью и утром);
  • Тяжело протекающая хроническая обструктивная болезнь легких;
  • Сердечная недостаточность второй степени и больше;
  • Дыхательная недостаточность второй степени и больше;
  • Легочное сердце;
  • Метаболический синдром;
  • Пиквикский синдром;
  • Снижение функционирования щитовидки.
  • Храп и остановка дыхания в процессе сна с дальнейшими всхрапываниями;
  • Частое ночное мочеиспускание (более двух раз за ночь);
  • Трудное дыхание, одышка либо приступ удушья ночью;
  • Ночное потоотделение;
  • Постоянные пробуждения и тяжелый сон;
  • Вялость утром;
  • Головная боль по утрам;
  • Цианоз;
  • Выраженное сонливое состояние днем;
  • Депрессивные состояния, апатичность, раздражимость, пониженный фон настроения;
  • Гастроэзофагальный рефлюкс по ночам.

Компьютерная пульсоксиметрия осуществляется в целях динамического наблюдения за эффективностью способов респираторной поддержки:

  1. Продолжительная кислородотерапия, используя кислородные концентраторы;
  2. Неинвазивная дополнительная вентиляция легких регулярным положительным давлением и 2-хуровневым положительным давлением.

Показатели и нормы

  • Пульсоксиметрический датчик обычно монтируется на периферических местах в организме, к примеру, пальцы, ушная мочка либо крылья носа. В нем расположены 2 светодиода, один из них излучает видимый свет красного цвета, второй – в инфракрасном спектре.
  • Свет начинает проходить сквозь ткань к фотодетектору , в это время определенная часть излучения может быть поглощена кровью и мягкой тканью зависимо от содержания гемоглобина. Общее количество поглощенного света длинами волн колеблется зависимо от насыщенности гемоглобина кислородом в тканях внутренних органов.
  • Насыщенность гемоглобином артериальной крови кислородом является средним количеством кислорода, которое связано с каждой молекулой гемоглобина. Показания выглядят в качестве процента насыщенности и звукового сигнала. Его высота меняется зависимо от сатурации.
  • Частота пульса определяется ударами в минуту приблизительно за 5-15 секунд.

Пульсоксиметр не предоставляет сведений о:

  1. содержании кислорода в кровотоке;
  2. концентрации растворенного в кровотоке кислорода;
  3. объеме и частоте дыхания;
  4. сердечном выбросе либо артериальном давлении.

По систолическому артериальному давлению возможно сделать вывод после возникновения волны на плетизмограмме во время спускания воздуха в манжетке при неинвазивном замере давления.

Пульсоксиметрия осуществляется в целях определения концентрации кислорода в гемоглобине и частоты сокращений сердца. Нормальными показателями сатурации будут приблизительно одинаковы как у людей во взрослом возрасте, так и у детей и будут составлять 94-97%, в венозной крови - преимущественно 75%.

  • Понижение данных показателей свидетельствует о формирующемся кислородном голодании, повышение в основном можно наблюдать в период осуществления оксигенотерапии. Сведения сатурации должны превышать 95%.
  • Когда достигнута цифра в 94% , специалист принимает неотложные меры в целях противодействия кислородному голоданию, а критическим показателем считается сатурация 90% и меньше, в таких ситуациях больному необходима незамедлительная помощь.
  • Множество пульсоксиметров делают звуковые сигналы во время негативных сведений. Они резко реагируют на понижение насыщенности кислородом меньше 90%, потерю либо уменьшение пульса, учащенное сердцебиение.
  • Когда речь идет о детях , то тут при определенных возрастных показателях существует своя норма. Пульс во время спокойного состояния у взрослых людей варьируется в границах от 60 до 90 ударов, в детском возрасте частота сердечных сокращений колеблется в зависимости от возраста, потому показатели будут разниться с переходом в следующую возрастную категорию.
  • У новорожденных младенцев пульс может достигать до 140 ударов, со временем понижаясь в процессе взросления к юношескому возрасту к нормальным показателям взрослого человека.
  • Когда сведения отображают 100% насыщенности кислородом, то можно сделать заключение о глубине дыхании в процессе сна. Подобные результаты можно получить во время применения кислородных смесей.
  • Во время обструктивного апноэ сатурация составляет в определенных ситуациях 80%, это считается критическим показателем. Данные свидетельствуют про то, что в процессе сна ощущаются существенные трудности в функционировании дыхания. Больной часто нуждается в респираторной поддержке ночью.
  • Измерять сатурацию следует , когда есть трудности с артериальной кровью, так как непосредственно она доставляет кислород к тканям, в связи с этим анализ венозного русла с этой точки зрения не будет представлять какое-либо диагностически ценное либо целесообразное значение.
  • Когда уменьшается общий объем крови , спазм артерий данные пульсоксиметрии изменяются, не во всех случаях показывают соответствующие показатели сатурации.

Стоимость процедуры

Цена за проведение процедуры пульсоксиметрии колеблется в зависимости от региона, медицинского учреждения и других факторов:

Сатурация – насыщение жидкости газами. В медицине под сатурацией понимают концентрацию кислорода в крови, которая выражается в процентном соотношении.

Каждая молекула гемоглобина способно переносить 4 молекулы кислорода. Сатурация крови кислородом - это усредненный процент насыщения молекулами кислорода молекул гемоглобина. При 100% сатурации говорят о наличии четырех прилепленных молекул кислорода к одной молекуле гемоглобина.

Для измерения кислородной сатурации крови используют пульсометры. Измеряется уровень гемоглобина в крови. При снижении объема красных телец наступает кислородное голодание, а при повышении – кровь загустевает и образуются тромбы, которые вызывают инфаркты.

Нормой гемоглобина в крови для детей считают 120-140 грамм в одном литре крови. Организм ребенка еще не накопил нужного объема железа, которое будет синтезировать в будущем красные тельца. По этой причине многие дети имеют пониженное содержание гемоглобина. Родители до 6 летнего возраста своего ребенка должны внимательно следить за уровнем гемоглобина – в этом возрасте у человека максимальная жизненная нагрузка и интенсивное развитие организма. Считается, что 90% всех знаний получены до 5-6 лет.

Низкая сатурация крови кислородом приводит к ослаблению сердечно-сосудистой и иммунной системы, замедляется работа мозга. В последствии не только ослабевает физическое состояние, но и наблюдается задержка умственного развития.

Нормой сатурации артериальной крови считаю 95-100%, а венозной – 75%. При 94% развивается гипоксия и требуются меры по ее предотвращению, менее 90% - ситуация критическая, пациент нуждается в экстренной медицинской помощи.

При низком уровне сатурации следует повысить объем вдыхаемого кислорода. Все последующие действия должны выполняться по правилу ABCDE:


  • AIRWAY – проверить проходимость дыхательных путей, проконтролировать ЭТТ, провести меры по купированию ларингоспазма.
  • BREATHING – проверить наличие дыхания, его частоту, дыхательный объем, аускультацию легких и, при необходимости, купировать бронхоспазм.
  • CIRCULATION – проверить кровообращение: контролировать пульс, артериальное давление, ЭКГ, выявить кровопотери и дегидратацию.
  • DRUG EFFECTS – взаимодействие препаратов могут вызвать низкую сатурацию крови кислородом (мышечные релаксанты, летучие анестетики, седативные, опиоиды).
  • EQUIPMENT – проверить работу оборудования по подаче кислорода, проходимость и герметичность дыхательного контура.

Сатурация часто развивается при поднятии на высоту от 2500 метров. В таких случаях говорят про развитие горной болезни. Она прекращается после снижения. Опытные спортсмены часто с ней сталкиваются и заранее готовятся к восхождению на большую высоту: выполняют физические упражнения, проходят профилактический курс лечения медикаментозными препаратами.

К индивидуальным факторам развития болезни относят:


  • индивидуальная устойчивость к недостатку кислорода (к примеру, жители гор);
  • физическая подготовка;
  • скорость поднятия на высоту;
  • длительность и степень кислородного голодания;
  • тренированность;
  • интенсивность физических упражнений.

Существует ряд факторов, провоцирующих снижение кислорода в крови:

  • кофеин и алкоголь в крови;
  • переутомление, бессонница и стресс;
  • переохлаждение;
  • плохое питание;
  • обезвоживание и нарушение водно-солевого баланса;
  • повышенный вес тела;
  • кровопотери;
  • респираторные и некоторые хронические заболевания: хроническая форма гнойных стоматологических заболеваний, пневмония, бронхит, ангина.

Больным следует постоянно контролировать сатурацию крови кислородам пульсоксометром. Для анализа забор крови не производится. Аппарат основан на дифференцированном поглощении света. Гемоглобин с разной насыщенностью кислорода поглощает свет разной длины.

Цикл статей, посвященных мониторингу жизненно-важных функций в условиях СМП. Первая статья будет посвящена пульсоксиметрии.

Состоявшееся в последнее время некоторое переоснащение СМП привело к появлению и в нашей стране на оснащении бригад скорой помощи пульсоксиметров, что не может не радовать, так как работники догоспитального этапа получили в руки прибор, который (при умелом его использовании) позволяет существенно улучшить качество оказываемой ими помощи. О том, что такое пульсоксиметрия и как можно использовать данные, полученные на экране пульсоксиметра, в лечении пациентов, мы и поговорим.

Итак, в основу метода пульсоксиметрии положено измерение поглощения света определенной длины волны гемоглобином крови. Гемоглобин служит своего рода фильтром, причем "цвет" фильтра зависит от количества кислорода, связанного с гемоглобином, или, иными словами, от процентного содержания оксигемоглобина, а "толщину" фильтра определяет пульсация артериол: каждая пульсовая волна увеличивает количество крови в артериях и артериолах. Таким образом, применение пульсоксиметрии позволяет определить сразу три диагностических параметра: степень насыщения гемоглобина крови кислородом, частоту пульса и его "объемную" амплитуду.

История метода

История пульсоксиметрии берет свое начало с 1874 года, когда некий Вирордт обнаружил, что поток красного света, проходя через кисть, ослабевает после наложения жгута. В 30-60-х годах нашего века предпринимается множество попыток создать устройство для быстрого выявления гипоксемии, но приборы были громоздкими и неудобными, а компактных электронных схем не существовало (микропроцессоры появились гораздо позже), свет нужных длин волн получали с помощью светофильтров, установленных в датчике, да и процедуры калибровки были слишком сложны для повседневной работы.

В 1972 году Такуо Аояги (на фото), инженер японской корпорации NIHON KOHDEN, изучавший неинвазивный метод измерения сердечного выброса, обнаружил, что по колебаниям абсорбции света, вызванной пульсацией артериол, можно рассчитать оксигенацию именно артериальной крови. Вскорости был выпущен и первый пульсоксиметр (модель OLV-5100). Этот прибор не нуждался в калибровках, но в качестве источника света в нем по-прежнему использовалась система светофильтров. Скотт Вилбер впервые употребил для калибровки монитора и обработки данных микропроцессор, а также запатентовал собственный алгоритм расчета сатурации. Объединение принципа Т. Аояги и полупроводниковых технологий позволило С. Вилберу создать первый пульсоксиметр современного образца.

Договоримся о терминах

Уважаемые коллеги, всем хорошо известно выражение: «ясная мысль ясно излагается». В свете этого мне бы хотелось, чтобы вы раз и навсегда усвоили для себя значение и обозначение определенных терминов, имеющих самое непосредственное отношение к обсуждаемой тематике. Дело в том, что периодически встречающееся среди коллег употребление терминов вроде «сатурация кислорода», как привило, констатирует непонимание не только основ метода, но и принципов внешнего и внутреннего дыхания.

Итак, рассмотрим термины и их обозначения.

SAT - сатурация (насыщение);
НЬО2 - процентное содержание НЬО2 от общего количества гемоглобина;
SаO2 - насыщение артериальной крови кислородом;
SpO2 - насыщение артериальной крови кислородом, измеренное методом пульсоксиметрии.

Последнее обозначение - наиболее употребляемое и самое корректное, поскольку предполагает, что результат измерения зависит от особенностей метода. Например, SpO2 при наличии в крови карбоксигемоглобина будет выше истинной величины SaO2, измеренной лабораторным методом, но об этом мы поговорим ниже.

Принцип метода

В основе метода, как, наверное, уже всем стало понятно, лежит спектрофотометрия, т. е. дифференциация молекул по спектру поглощения света. С точки зрения физики пульсоксиметрия представляет собой оксиметрию, основанную на изменении спектра поглощения электромагнитной (световой) энергии при изменении процентного содержания оксигемоглобина.

Датчик пульсоксиметра представляет собой комбинацию двух светодиодов, один из которых излучает красный цвет, а второй дает невидимое глазу инфракрасное излучение. На противоположной части датчика находится фотодетектор, определяющий интенсивность падающего на него светового потока. Когда между светодиодами и фотодетектором находится палец или мочка уха пациента, часть излучаемого света поглощается, рассеивается, отражается тканями и кровью, и световой поток, достигающий детектора, ослабляется.

Напомню, что гемоглобин — это общее название белков крови, содержащихся в эритроцитах и состоящих из четырех цепочек бесцветного белка глобина, каждая из которых включает одну группу гема. Разновидности гемоглобина имеют собственные названия и обозначения (фетальный Нb, MetHb и пр.).

Оксигемоглобин — полностью оксигенированный гемоглобин, каждая молекула которого содержит четыре молекулы кислорода (О2). Он обозначается как НbО2 и имеет совершенно другой спектр поглощения светового излучения.

Дезоксигемоглобин — гемоглобин, не содержащий кислорода. Называется также восстановленным, или редуцированным, гемоглобином и обозначается Нb.

Ткани, через которые проходят оба световых потока, являются неизбирательным фильтром и равномерно ослабляют излучение обоих светодиодов. Степень ослабления зависит от толщины тканей, наличия кожного пигмента, лака для ногтей и прочих препятствий на пути света. Гемоглобин же, в отличие от тканей, — это цветной фильтр, причем на цвет фильтра влияет, как уже подчеркивалось, степень насыщения гемоглобина кислородом. Дезоксигемоглобин, имеющий темно-вишневый цвет, интенсивно поглощает красный свет и слабо задерживает инфракрасный. А вот оксигемоглобин хорошо рассеивает красный свет (и потому сам имеет красный цвет), но интенсивно поглощает инфракрасное излучение. Спектры абсорбции света Hb и HbO2 хорошо показаны на рисунке:

Становится понятным, какой же поток пройдет через оксигенированную кровь. Таким образом, соотношение двух световых потоков, дошедших до фотодетектора через мочку уха или палец, зависит от степени насыщения (сатурации) гемоглобина крови кислородом. По этим данным, используя специальный алгоритм, прибором рассчитываются процентное содержание в крови оксигемоглобина. При этом учитываются показатели только пульсирующего кровотока, так как нас интересует насыщение кислородом именно артериальной крови. В современных моделях пульсоксиметров пульсация артериол выводится на дисплей в виде кривой. Поскольку эта кривая отражает колебания объема артериального русла, измеренные фотометрическим методом, она называется фотоплетизмограммой (ФПГ).

При использовании пульсоксиметрии следует всегда иметь в виду, что информация о снижении или повышении SаО2 отражается на дисплее с некоторой задержкой; в отдельных случаях она составляет несколько десятков секунд. Главная причина задержки заключается в том, что датчик монитора измеряет сатурацию на самой периферии кровеносного русла, да в к тому же нередко устанавливается на самых удаленных от центра частях тела — пальцах. В норме кровь очередного ударного объема достигает пальцевого датчика через 3-5 сек, а ушного - через 2-3 сек после сердечного сокращения, но в отдельных случаях (централизация) этот интервал может увеличиваться до 20-30 сек, а иногда и до 1-1,5 мин. Становится понятным, почему при критических состояниях ушной датчик более предпочтителен, нежели пальцевой.

Следует также помнить, что пульсоксиметр показывает усредненные параметры за некоторый период наблюдения. В разных моделях этот период составляет от 3 до 20 сек или от 2 до 20 циклов. В простейших моделях интервал обновления данных задается жестко и обычно равняется 5 с. Таким образом, время реакции числового дисплея монитора на внезапное изменение сатурации складывается из времени кровотока на участке "сердце-палец" и интервала обновления данных на дисплее, а практически означает, что уровень сатурации отражается на дисплее с задержкой в пределах от 10 сек до 1,5 мин.

Погрешности

Понятно, что уже сам принцип и его техническая реализация в пульсоксиметрии закладывают основу для появления всяческих погрешностей, которые могут служить причиной ошибочных выводов специалиста, использующего данный вид мониторинга. Самая частая склонность к артефактам отмечается (и это понятно) у недорогих моделей, не имеющих специальных систем защиты от помех. Поэтому критически относитесь к показаниям вашего прибора, купленного по нацпроекту, если его производитель не внушает серьезного доверия.

Итак, рассмотрим основные виды погрешностей.

1. Погрешности, связанные с освещением.

    Внешнее освещение

    Ксеноновые лампы

2. Погрешности вследствие электронаводки

    Источники электромагнитного излучения (мониторы, ЭКС, аппараты ИВЛ, дефибрилляторы и т. д.)

    Электрохирургические инструменты (малоактуально для СМП)

3. Погрешности, порожденные низкой амплитудой ФПГ. Способность пульсоксиметра выделять полезный сигнал для расчета SpO2 зависит от объема пульсаций, то есть от амплитуды ФПГ. При ослаблении периферического кровотока монитор вынужден прибегать к значительному усилению электрического сигнала, но при этом неизбежно нарастает и фоновый шум фотодетектора. При критическом снижении амплитуды ФПГ соотношение сигнал/шум становится настолько низким, что сказывается на точности расчета SpO2. Пульсоксиметры разных фирм ведут себя в этой ситуации неодинаково. "Честные" модели либо прекращают индикацию SpO2, либо предупреждают на дисплее, что не ручаются за точность данных. Остальные же не моргнув глазом показывают величину, рассчитанную зачастую не из сигнала, а из шума. Я думаю, что практически каждый реаниматолог или врач СМП видел, как отечественные модели показывают 100%-ю SpO2 при проведении закрытого массажа сердца, что не может не вызывать улыбку. Грусть вызывают лишь попытки некоторых коллег интерпретировать это как свидетельство качества проводимого массажа.

4. Концентрация гемоглобина в крови может также являться источником погрешностей. При глубокой анемии, сочетающейся с расстройствами периферического кровотока, точность измерения Sp02 уменьшается на несколько процентов. Причина снижения точности здесь понятна: именно гемоглобин является носителем исходной информации для пульсоксиметра. Естественно, в свете этого заявления некоторых коллег о том, что «при анемии снижается сатурация», не выдерживают никакой критики, так как никакой линейной зависимости между сатурацией и снижением концентрации гемоглобина не существует.

В книге очень уважаемого мной И. Шурыгина «Мониторинг дыхания» описан простой способ проверки прибора. Суть его в следующем. Зафиксируйте датчик на своем пальце, положите руку на стол и включите пульсоксиметр. На дисплее высветятся значения SрО2 и частоты пульса, измеренные в идеальных условиях. Запомните их, встаньте и поднимите руку с датчиком вверх. В результате кровенаполнение тканей пальца и амплитуда пульсаций резко уменьшатся. Пульсоксиметру потребуется несколько секунд для того, чтобы подобрать интенсивность свечения фотодиодов и новый коэффициент усиления сигнала и заново рассчитать сатурацию и частоту пульса. Данные параметры не должны отличаться от исходных: поднятие руки никак не влияет на оксигенацию крови в легких. Если пульсоксиметр показывает другие значения или вообще прекращает работать, значит, он непригоден для мониторинга больных с тяжелыми расстройствами кровообращения.

5. Погрешности вследствие движений пациента. Самая частая причина ошибок пульсоксиметра. Она очень актуальна именно для СМП, так как в полной мере проявляется при транспортировке. Умение модели пульсоксиметра определять эти артефакты и бороться с ними во многом определяется качеством прибора. Для исключения данных помех и правильной интерпретации показателей монитора крайне важно, чтобы пульсоксиметр отображал ФПГ, по которой можно судить о наличии обсуждаемых артефактов:

Разумеется, частота пульса, сатурация и амплитуда ФПГ, рассчитанные в таких условиях, совершенно неинформативны.

Таким образом, напрашивается неутешительный вывод, что дешевый прибор, да еще и без монитора, способен работать только в идеальных условиях и непригоден для СМП. Во всяком случае, к его показателям следует относиться очень и очень осмотрительно.

6. Погрешности вследствие наличия дополнительных фракций гемоглобина в крови. К этим фракциям принадлежат дисгемоглобины (карбокси- и метгемоглобин), а также фетальный гемоглобин.

    При отравлении угарным газом или у больных с недавно полученными ожогами пламенем карбоксигемоглобин может составлять десятки процентов от общего количества гемоглобина. СОНЬ поглощает свет почти так же, как и НЬО2, поэтому вместо насыщения гемоглобина кислородом пульсоксиметр у таких пациентов показывает сумму процентных концентраций СОНЬ и НЬОа. Например, если SаО2 = 65 %, а СОНЬ = 25 %, пульсоксиметр высветит на дисплее величину SpO2, близкую к 90 %. Таким образом, при карбоксигемоглобинемии пульсоксиметр завышает степень насыщения гемоглобина кислородом.

    MetHb поглощает красный и инфракрасный свет так же, как и гемоглобин, насыщенный кислородом на 85 %. При умеренной метгемоглобинемии пульсоксиметр занижает SpO2, а при выраженной метгемоглобинемии показывает величину, близкую к 85 %, которая почти не зависит от колебаний SaO2. Об этом следует помнить при активном применении нитратов у пациента.

    Наличие в крови фетального гемоглобина не отражается на показателях пульсоксиметра.

Лак для ногтей практически не искажает показания пульсоксиметра. В литературе имеются данные о том, что синий лак может избирательно ослаблять излучение одного из светодиодов (660 нм), что приводит к артефактному занижению SpO2, но практического подтверждения они пока не получили.

Пульсоксиметрия в диагностике

Вначале следует уяснить для себя одну очень важную вещь: пульсоксиметрия не является показателем вентиляции, а характеризует только оксигенацию. Больной (особенно после преоксигенации) может не дышать несколько минут до того, как SpO2 начнет падать. Из этого следует, что пульсоксиметр надежнее всего диагностирует истинную (т. н. «гипоксическую») гипоксию, т. е. гипоксию, связанную со снижением концентрации кислорода в оттекающей от легких крови.

Нормальная величина SpO2 находится в диапазоне 94-98 %, причем у пациентов молодого и среднего возраста, не имеющих легочной патологии, преобладают значения сатурации 96-98 %, а у пожилых больных чаще встречается Sp02 94-96 %, что обусловлено возрастными изменениями в легких. Остерегайтесь пульсоксиметров, которые оптимистично пишут вам сатурацию 100% при дыхании пациента атмосферным воздухом — как правило, это недорогие приборы невысокого качества.

Гипоксемия. До появления пульсоксиметрии главным признаком гипоксемии считался цианоз. Интенсивность цианоза зависит от количества восстановленного гемоглобина в крови и от объема сосудистого ложа (в самой емкой, венозной его части). Поэтому при выраженной анемии или вазоконстрикции оценка цианоза затруднена. Существуют две главные причины цианоза: артериальная гипоксемия и ухудшение периферического кровотока. Они могут сочетаться. Считается, что когда SpO2 опускается до 90 %, увидеть цианоз удается лишь в половине случаев. Даже десатурация артериальной крови до 85 % (РаО2 = 50 мм рт. ст.), что расценивается как серьезная гипоксемия, требующая коррекции, далеко не всегда сопровождается развитием цианоза. В этом можно убедиться, сопоставляя Sp02 и внешний вид больных. В этой ситуации значение пульсоксиметра велико. Именно его широкое применение рассеяло иллюзии специалистов экстремальной медицины относительно нормальной оксигенации пациентов. Мониторинг показал, что эпизоды гипоксемии в возникают в 20 (!) раз чаще, чем обнаруживаются при обычном (без применения пульсоксиметрии) наблюдении за больным. Описано немало случаев, когда опытные врачи не могли распознать цианоз у пациентов с глубочайшей артериальной десатурацией, замаскированной анемией или вазоконстрикцией. Не случайно с внедрением пульсоксиметров в операционных и палатах интенсивной терапии резко сократилась частота эпизодов недиагностированной или несвоевременно обнаруженной гипоксемии.

Ухудшение перфузии периферии сопровождается возникновением акроцианоза. При отсутствии легочной патологии пульсоксиметр в такой ситуации показывает нормальный уровень SpO2, но из уменьшенного объема хорошо оксигенированной артериальной крови, притекающей к тканям кожи, последние извлекают прежнее количество кислорода. К пульсоксиметрическим признакам нарушения перфузии тканей относится уменьшение амплитуды фотоплетизмограммы, что позволяет распознать это состояние.

Итак, становится понятным, что в случае гипоксемии пульсоксиметр покажет снижение SpO2, при этом, в зависимости от состояния периферического кровообращения, амплитуда ФПГ может быть нормальной, повышенной или сниженной. При этом оценка обсуждаемых показателей в динамике может быть гораздо информативнее их однократного измерения.

Я намеренно сейчас немного уйду в сторону от обсуждаемого вопроса, поскольку рядом с нашей темой стоит одна проблема, которую мне бы очень хотелось обсудить.

Увеличение концентрации кислорода во вдыхаемой (или вдуваемой — при ИВЛ) газовой смеси - универсальный способ коррекции артериальной гипоксемии. У большинства пациентов одной только оксигенотерапии достаточно для того, чтобы нормализовать или хотя бы повысить Sр02. Однако, руководствуясь принципом: «Если больной дышит плохо, пусть он плохо дышит кислородом», полезно помнить следующие вещи:

    беспричинной гипоксемии не бывает;

    кислород ликвидирует гипоксемию, но не причину, ее породившую, создавая иллюзию относительного благополучия;

    к кислороду необходимо относиться так же, как к любому другому медицинскому препарату - его нужно применять по определенным показаниям, в определенных дозах и помнить, что он обладает весьма опасными побочными эффектами;

    концентрация кислорода в дыхательной смеси должна быть той минимальной, которая достаточна для коррекции гипоксемии, т. е. не стоит ставить всем налево и направо 8-10 л/мин;

    предельная безопасная для длительного использования концентрация кислорода в дыхательной смеси, по последним данным, равна 40 %;

    токсическое влияние высоких концентраций кислорода на легкие не имеет специфических проявлений и всплывает в виде ателектазов, гнойного трахеобронхита или респираторного дистресс-синдрома, которые в дальнейшем соотносят с чем угодно, но не с оксигенотерапией;

    перед началом оксигенотерапии задайте себе вопрос — «не нуждается ли пациент в ИВЛ?»;

    у пациентов с хронической легочной патологией имеется адаптация к более низкому уровню сатурации, поэтому попытка «нормализовать» SpO2 с помощью оксигенотерапии у таких пациентов может привести к угнетению спонтанного дыхания и развитию апноэ;

    и наконец, к кислороду в полной мере относится золотое правило интенсивной терапии: лучший лист назначений - не тот, к которому нечего добавить, а тот, из которого нечего вычеркнуть. Это же правило в полной мере относится и к помощи, оказываемой на догоспитальном этапе. Например, вводить пациенту с ЖКК этамзилат лишь на основании представлений врача о том, что он «не навредит» - непрофессионально.

Гиповолемия. Как известно, гиповолемия — это несоответствие объема циркулирующей крови емкости сосудистого русла. Ее классическим примером является травматический шок. Пульсоксиметрия не принадлежит к точным методам мониторинга гемодинамики, однако нарушения системного и легочного кровообращения, вызванные гиповолемией, приводят к типичным изменениям пульсоксиметрических показателей, которые дополняют общую клиническую картину.

Итак, чем же проявляется гиповолемия?

    Снижение SpO2, обусловленное выраженной неравномерностью легочного кровотока. Этот признак очень типичен для гиповолемии, но может быть выявлен только у больных, дышащих воздухом или смесью N2O: О2 с высоким содержанием закиси азота. При дыхании кислородом в концентрации 30% и выше, этот признак выявлен не будет!

    Тахикардия - компенсаторная реакция, направленная на поддержание сердечного выброса. Здесь все понятно.

    Снижение амплитуды фотоплетизмограммы, вплоть до прекращения ее показа вообще, в результате периферического артериолоспазма и уменьшения ударного объема (на ранних стадиях шока, до пареза прекапилляров вследствие лактат-ацидоза). В свою очередь увеличение амплитуды ФПГ на фоне интенсивной терапии свидетельствует о восстановлении периферического кровотока.

    Дыхательные волны на фотоплетизмограмме (см. рисунок) - колебания высоты волн ФПГ, синхронные с дыханием. Данный признак очень чувствителен и зачастую появляется раньше остальных. Дыхательные волны отражают возросшую чувствительность венозного возврата к колебаниям внутригрудного давления.

Пульсоксиметрия при интубации трахеи. Использование пульсоксиметрии поистине бесценно в процессе проведения интубации трахеи, причем пульсоксиметр реагирует на гипоксемию значительно раньше, чем выявляются ее клинические признаки.

    В процессе преоксигенации SpO2 быстро поднимается до 100% (при отсутствии РДСВ и другой тяжелой легочной патологии) за счет замещения азота кислородом в легких. Однако само по себе поднятие сатурации до максимальных значений не может служить критерием качества преоксигенации по причинам, указанным выше.

    Вводный наркоз способствует исчезновению негативного эмоционального фона пациента. Некоторые препараты, используемые для индукции, оказывают вазодилатирующее действие (тиопентал, пропофол и отчасти кетамин). Поэтому во время вводного наркоза происходит увеличение амплитуды ФПГ.

    Ларингоскопия и интубация трахеи сопровождаются механическим раздражением мощных рефлексогенных зон и возбуждением симпатической системы, которое проявляется вазоспазмом, артериальной гипертензией, тахикардией и, довольно часто, транзиторными нарушениями ритма сердца. В такие минуты внимание медика полностью сосредоточено на выполняемых действиях, но при просмотре трендов, хранящихся в памяти пульсоксиметра, нередко обнаруживается снижение амплитуды ФПГ и постепенное ее восстановление после завершения манипуляции.

    При затянувшейся интубации трахеи пульсоксиметр дает возможность контролировать допустимую продолжительность этой манипуляции по уровню SpO2, для чего нужно установить минимальное время обновления данных на дисплее монитора (режим "fast response"), чтобы сократить промежуток от момента возникновения гипоксемии до ее регистрации монитором. Но даже несмотря на это необходимо помнить, что показания пульсоксиметра запаздывают. Снижение SpO2 ниже 90% однозначно требует прекращения попыток интубации и возобновления оксигенации пациента.

    В отсутствие капнографа данные пульсоксиметрии могут служить относительным подтверждением правильного нахождения эндотрахеальной трубки. Здесь также необходимо помнить, что показатели SpO2 будут запаздывать. При появлении четкой тенденции к снижению SpO2 следует исключить нахождение трубки в пищеводе и, при необходимости, переинтубировать пациента.

Заключение

Каждый эпизод снижения Sp02 имеет свою причину и должен побуждать работника экстренной медицинской помощи не только к коррекции самой гипоксемии (этого зачастую нетрудно достичь обычной ингаляцией кислорода), но также к выявлению и устранению вызвавших ее расстройств. Каждый клинический случай имеет свой набор наиболее вероятных причин артериальной гипоксемии; внимательная оценка состояния больного помогает обнаружить именно ту, которая привела к десатурации. Старайтесь объяснить хотя бы для себя причину и динамику снижения или повышения сатурации в каждом клиническом случае — это быстро научит вас использовать диагностические возможности метода в полной мере.

Умение распознавать причину артериальной гипоксемии или изменения амплитуды пульсовой волны во многих случаях приносит большую пользу. Пульсоксиметрия - самый распространенный метод мониторинга на СМП и в отделениях интенсивной терапии, и уменьшение SpO2 нередко оказывается единственным ранним сигналом неблагополучия. Ориентируясь на показания пульсоксиметра, можно, к примеру, своевременно увеличить темп инфузионной терапии, исправить положение интубационной трубки, удалить катетером накопившуюся мокроту, заподозрить развитие пневмо- или гемоторакса. Положительная динамика сатурации после ликвидации нарушения подтверждает истинность вашего предположения.

Умение находить связь между колебаниями показателей на дисплее пульсоксиметра и динамикой в состоянии пациента должно стать привычкой, которую, однако, нужно развивать. Незначительные интеллектуальные затраты на приобретение этого навыка окупаются очень быстро. Кроме того, данный метод мониторинга при четком понимании его основ достаточно быстро осваивается.

Следует учесть, что пульсоксиметрия начинается не с подключения датчика к пациенту, а с грамотного выбора модели монитора. Надежность, способность улавливать сигнал даже при выраженных нарушениях периферического кровотока, удобное и четкое представление данных на дисплее, наличие алгоритмов коррекции артефактов (крайне важно для СМП), большой объем и хорошая организация памяти, несложная и интуитивно понятная система управления монитором - вот далеко не полный список требований к модели, которая в руках понимающего специалиста позволяет реализовать разнообразные возможности метода, которые были рассмотрены в статье.

Литература

    Зислин Б. Д., Чистяков А. В. Мониторинг дыхания и гемодинамики при критических состояниях.

    Кривский Л.Л. Капнография и пульсоксиметрия.

    Шурыгин И. А. Мониторинг дыхания.

    Andrew Griffiths , Tim Lowes, Jeremy Henning . Pre-Hospital Anesthesia Handbook.

    M.R. Pinsky D. Payen (Eds.) . Functional Hemodynamic Monitoring