Обонятельный анализатор, его строение и функции. Современные теории восприятия запахов. Адаптация и чувствительность обонятельной сенсорной системы. Обонятельная система человека Исследования ольфакторной системы

Обонятельные и вкусовые сенсорные системы.

Обонятельный анализатор представлен двумя системами - основной и вомероназальной, каждая из которых имеет три части: периферическую (органы обоняния), промежуточную, состоящую из проводников (аксоны нейросенсорных обонятельных клеток и нервных клеток обонятельных луковиц), и центральную, локализующуюся в гиппокампе коры больших полушарий для основной обонятельной системы.

Основной орган обоняния (organum olfactus), являющийся периферической частью сенсорной системы, представлен ограниченным участком слизистой оболочки носа - обонятельной областью, покрывающей у человека верхнюю и отчасти среднюю раковины носовой полости, а также верхнюю часть носовой перегородки. Внешне обонятельная область отличается от респираторной части слизистой оболочки желтоватым цветом.

Периферической частью вомероназальной, или дополнительной, обонятельной системы является вомероназальный (якобсонов) орган (organum vomeronasale Jacobsoni). Он имеет вид парных эпителиальных трубок, замкнутых с одного конца и открывающихся другим концом в полость носа. У человека вомероназальный орган расположен в соединительной ткани основания передней трети носовой перегородки по обе ее стороны на границе между хрящом перегородки и сошником. Кроме якобсонова органа, вомероназальная система выключает в себя вомероназальный нерв, терминальный нерв и собственное представительство в переднем мозге - добавочную обонятельную луковицу.

Функции вомероназальной системы связаны с функциями половых органов (регуляция полового цикла и сексуального поведения), и также связаны с эмоциональной сферой.

Развитие. Органы обоняния имеют эктодермальное происхождение. Основной орган развивается из плакод - утолщений передней части эктодермы головы. Из плакод формируются обонятельные ямки. У зародышей человека на 4-м месяце развития из элементов, составляющих стенки обонятельных ямок, образуются поддерживающие эпителиоциты и нейросенсорные обонятельные клетки. Аксоны обонятельных клеток, объединившись между собой, образуют в совокупности 20-40 нервных пучков (обонятельных путей - fila olfactoria), устремляющихся через отверстия в хрящевой закладке будущей решетчатой кости к обонятельным луковицам головного мозга. Здесь осуществляется синаптический контакт между терминалями аксонов и дендритами митральных нейронов обонятельных луковиц. Некоторые участки эмбриональной обонятельной выстилки, погружаясь в подлежащую соединительную ткань, образуют обонятельные железы.

Вомероназальный (якобсонов) орган формируется в виде парной закладки на 6-й неделе развития из эпителия нижней части перегородки носа. К 7-й неделе развития завершается формирование полости во-мероназального органа, а вомероназальный нерв соединяет его с добавочной обонятельной луковицей. В вомероназальном органе плода 21-й недели развития имеются опорные клетки с ресничками и микроворсинками и рецепторные клетки с микроворсинками. Структурные особенности вомероназального органа указывают на его функциональную активность уже в перинатальном периоде.

Строение. Основной орган обоняния - периферическая часть обонятельного анализатора - состоит из пласта многорядного эпителия высотой 60-90 мкм, в котором различают три типа клеток: обонятельные нейросенсорные клетки, поддерживающие и базальные эпителиоциты. От подлежащей соединительной ткани они отделены хорошо выраженной базальной мембраной. Обращенная в носовую полость поверхность обонятельной выстилки покрыта слоем слизи.

Рецепторные, или нейросенсорные, обонятельные клетки (cellulae neurosensoriae olfactoriae) располагаются между поддерживающими эпителиоцитами и имеют короткий периферический отросток - дендрит и длинный - центральный - аксон. Их ядросодержащие части занимают, как правило, срединное положение в толще обонятельной выстилки.

У собак, которые отличаются хорошо развитым органом обоняния, насчитывается около 225 млн обонятельных клеток, у человека их число значительно меньше, но все же достигает 6 млн (30 тыс. на 1 мм2). Дистальные части дендритов обонятельных клеток заканчиваются характерными утолщениями - обонятельными булавами (clava olfactoria). Обонятельные булавы клеток на своей округлой вершине несут до 10-12 подвижных обонятельных ресничек.

Цитоплазма периферических отростков содержит митохондрии и вытянутые вдоль оси отростка микротрубочки диаметром до 20 нм. Около ядра в этих клетках отчетливо выявляется гранулярная эндоплазматическая сеть. Реснички булав содержат продольно ориентированные фибриллы: 9 пар периферических и 2 - центральных, отходящих от базальных телец. Обонятельные реснички подвижны и являются своеобразными антеннами для молекул пахучих веществ. Периферические отростки обонятельных клеток могут сокращаться под действием пахучих веществ. Ядра обонятельных клеток светлые, с одним или двумя крупными ядрышками. Назальная часть клетки продолжается в узкий, слегка извивающийся аксон, который проходит между опорными клетками. В соединительнотканном слое центральные отростки составляют пучки безмиелинового обонятельного нерва, которые объединяются в 20-40 обонятельных нитей (filia olfactoria) и через отверстия решетчатой кости направляются в обонятельные луковицы.

Поддерживающие эпителиоциты (epitheliocytus sustentans) формируют многорядный эпителиальный пласт, в котором и располагаются обонятельные клетки. На апикальной поверхности поддерживающих эпителиоцитов имеются многочисленные микроворсинки длиной до 4 мкм. Поддерживающие эпителиоциты проявляют признаки апокриновой секреции и обладают высоким уровнем метаболизма. В цитоплазме их имеется эндоплазматическая сеть. Митохондрии большей частью скапливаются в апикальной части, где находится также большое число гранул и вакуолей. Аппарат Гольджи располагается над ядром. В цитоплазме поддерживающих клеток содержится коричнево-желтый пигмент.

Базальные эпителиоциты (epitheliocytus basales) находятся на базальной мембране и снабжены цитоплазматическими выростами, окружающими пучки аксонов обонятельных клеток. Цитоплазма их заполнена рибосомами и не содержит тонофибрилл. Существует мнение, что базальные эпителиоциты служат источником регенерации рецепторных клеток.

Эпителий вомероназального органа состоит из рецепторной и респираторной частей. Рецепторная часть по строению сходна с обонятельным эпителием основного органа обоняния. Главное отличие состоит в том, что обонятельные булавы рецепторных клеток вомероназального органа несут на своей поверхности не реснички, способные к активному движению, а неподвижные микроворсинки.

Промежуточная, или проводниковая, часть основной обонятельной сенсорной системы начинается обонятельными безмиелиновыми нервными волокнами, которые объединяются в 20-40 нитевидных стволиков (fila olfactoria) и через отверстия решетчатой кости направляются в обонятельные луковицы. Каждая обонятельная нить представляет собой безмиелиновое волокно, содержащее от 20 до 100 и более осевых цилиндров аксонов рецепторных клеток, погруженных в леммоциты. В обонятельных луковицах расположены вторые нейроны обонятельного анализатора. Это крупные нервные клетки, называемые митральными, имеют синаптические контакты с несколькими тысячами аксонов нейросенсорных клеток одноименной, а частично и противоположной стороны. Обонятельные луковицы построены по типу коры больших полушарий головного мозга, имеют концентрически расположенные 6 слоев: 1 -слой обонятельных волокон, 2 - клубочковый слой, 3 - наружный сетевидный слой, 4 - слой тел митральных клеток, 5 - внутренний сетевидный, 6 - зернистый слой.

Контакт аксонов нейросенсорных клеток с дендритами митральных происходит в клубочковом слое, где суммируются возбуждения рецепторных клеток. Здесь же осуществляется взаимодействие рецепторных клеток между собой и с мелкими ассоциативными клетками. В обонятельных клубочках реализуются и центробежные эфферентные влияния, исходящие из вышележащих эфферентных центров (переднее обонятельное ядро, обонятельный бугорок, ядра миндалевидного комплекса, препириформная кора). Наружный сетевидный слой образован телами пучковых клеток и многочисленными синапсами с дополнительными дендритами митральных клеток, аксонами межклубочковых клеток и дендро-дендритическими синапсами митральных клеток. В 4-м слое лежат тела митральных клеток. Их аксоны проходят через 4-5-й слои луковиц, а на выходе из них образуют обонятельные контакты вместе с аксонами пучковых клеток. В области 6-го слоя от аксонов митральных клеток отходят возвратные коллатерали, распределяющиеся в разных слоях. Зернистый слой образован скоплением клеток-зерен, которые по своей функции являются тормозными. Их дендриты образуют синапсы с возвратными коллатералями аксонов митральных клеток.

Промежуточная, или проводниковая, часть вомероназальной системы представлена безмиелиновыми волокнами вомероназального нерва, которые, подобно основным обонятельным волокнам, объединяются в нервные стволики, проходят через отверстия решетчатой кости и соединяются с добавочной обонятельной луковицей, которая расположена в дорсомедиальной части основной обонятельной луковицы и имеет сходное строение.

Центральный отдел обонятельной сенсорной системы локализуется в древней коре - в гиппокампе и в новой - гиппокамповой извилине, куда направляются аксоны митральных клеток (обонятельный тракт). Здесь происходит окончательный анализ обонятельной информации.

Сенсорная обонятельная система через ретикулярную формацию связана с вегетативными центрами, чем и объясняются рефлексы с обонятельных рецепторов на пищеварительную и дыхательную системы.

На животных установлено, что из дополнительной обонятельной луковицы аксоны вторых нейронов вомероназальной системы направляются в медиальное преоптическое ядро и гипоталамус, а также в вентральную область премамиллярного ядра и среднее амигдалярное ядро. Связи проекций вомероназального нерва у человека пока мало исследованы.

Обонятельные железы. В подлежащей рыхлой волокнистой ткани обонятельной области располагаются концевые отделы трубчато-алъвеолярных желез, выделяющие секрет, который содержит мукопротеиды. Концевые отделы состоят из элементов двоякого рода: снаружи лежат более уплощенные клетки - миоэпителиальные, внутри - клетки, секретирующие по мерокриновому типу. Их прозрачный, водянистый секрет вместе с секретом поддерживающих эпителиоцитов увлажняет поверхность обонятельной выстилки, что является необходимым условием для функционирования обонятельных клеток. В этом секрете, омывающем обонятельные реснички, растворяются пахучие вещества, присутствие которых только в этом случае и воспринимается рецепторными белками, вмонтированными в мембрану ресничек обонятельных клеток.

Васкуляризация. Слизистая оболочка полости носа обильно снабжена кровеносными и лимфатическими сосудами. Сосуды микроциркуляторного типа напоминают кавернозные тела. Кровеносные капилляры синусоидного типа образуют сплетения, которые способны депонировать кровь. При действии резких температурных раздражителей и молекул пахучих веществ слизистая оболочка носа может сильно набухать и покрываться значительным слоем слизи, что затрудняет носовое дыхание и обонятельную рецепцию.

Возрастные изменения. Чаще всего они обусловлены перенесенными в течение жизни воспалительными процессами (риниты), которые приводят к атрофии рецепторных клеток и разрастанию респираторного эпителия.

Регенерация. У млекопитающих в постнатальном онтогенезе обновление рецепторных обонятельных клеток происходит в течение 30 сут (за счет малодифференцированных базальных клеток). В конце жизненного цикла нейроны подвергаются деструкции. Малодифференцированные нейроны базального слоя способны к митотическому делению, лишены отростков. В процессе их дифференцировки увеличивается объем клеток, появляются специализированный дендрит, растущий к поверхности, и аксон, растущий в сторону базальной мембраны. Клетки постепенно перемещаются к поверхности, замещая погибшие нейроны. На дендрите формируются специализированные структуры (микроворсинки и реснички).
Вкусовая сенсорная система. Орган вкуса

Орган вкуса (organum gustus) - периферическая часть вкусового анализатора представлен рецепторными эпителиальными клетками во вкусовых почках (caliculi gustatoriae). Они воспринимают вкусовые раздражения (пищевые и непищевые), генерируют и передают рецепторный потенциал афферентным нервным окончаниям, в которых появляются нервные импульсы. Информация поступает в подкорковые и корковые центры. При участии этой сенсорной системы обеспечиваются также некоторые вегетативные реакции (отделение секрета слюнных желез, желудочного сока и др.), поведенческие реакции на поиск пищи и т.п. Вкусовые почки располагаются в многослойном плоском эпителии боковых стенок желобоватых, листовидных и грибовидных сосочков языка человека. У детей, а иногда и у взрослых вкусовые почки могут находиться на губах, задней стенке глотки, небных дужек, наружной и внутренней поверхностях надгортанника. Количество вкусовых почек у человека достигает 2000.

Развитие. Источником развития клеток вкусовых почек является эмбриональный многослойный эпителий сосочков. Он подвергается дифференцировке под индуцирующим воздействием окончаний нервных волокон язычного, языкоглоточного и блуждающего нервов. Таким образом, иннервация вкусовых почек появляется одновременно с возникновением их зачатков.

Строение. Каждая вкусовая почка имеет эллипсоидную форму и занимает всю толщу многослойного эпителиального пласта сосочка. Она состоит из плотно прилежащих друг к другу 40-60 клеток, среди которых различают 5 видов: сенсоэпителиальные («светлые» узкие и «светлые» цилиндрические), «темные» поддерживающие, базальные малодифференцированные и периферические (перигеммальные).

От подлежащей соединительной ткани вкусовая почка отделяется базальной мембраной. Вершина почки сообщается с поверхностью языка при помощи вкусовой поры (poms gustatorius). Вкусовая пора ведет в небольшое углубление между поверхностными эпителиальными клетками сосочков - вкусовую ямку.

Сенсоэпителиальные клетки. Светлые узкие сенсоэпителиальные клетки содержат в базальной части светлое ядро, вокруг которого располагаются митохондрии, органеллы синтеза, первичные и вторичные лизосомы. Вершина клеток снабжена «букетом» микроворсинок, являющихся адсорбентами вкусовых раздражителей. На цитолемме базальной части клеток берут начало дендриты чувствительных нейронов. Светлые цилиндрические сенсоэпителиальные клетки подобны светлым узким клеткам. Между микроворсинками во вкусовой ямке находится электронно-плотное вещество с высокой активностью фосфатаз и значительным содержанием рецепторного белка и гликопротеидов. Это вещество играет роль адсорбента для вкусовых веществ, попадающих на поверхность языка. Энергия внешнего воздействия трансформируется в рецепторный потенциал. Под его влиянием из рецептирующей клетки выделяется медиатор, который, действуя на нервное окончание сенсорного нейрона, вызывает в нем генерацию нервного импульса. Нервный импульс передается далее в промежуточную часть анализатора.

Во вкусовых почках передней части языка обнаружен сладкочувствительный рецепторный белок, задней части - горькочувствительный. Вкусовые вещества адсорбируются на примембранном слое цитолеммы микроворсинок, в которую вмонтированы специфические рецепторные белки. Одна и та же вкусовая клетка способна воспринимать несколько вкусовых раздражений. При адсорбции воздействующих молекул происходят конформационные изменения рецепторных белковых молекул, которые приводят к локальному изменению проницаемости мембран вкусового сенсорного эпителиоцита и генерации потенциала на его мембране. Этот процесс имеет сходство с процессом в холинергических синапсах, хотя допускается участие и других медиаторов.

В каждую вкусовую почку входит и разветвляется около 50 афферентных нервных волокон, формирующих синапсы с базальными отделами рецепторных клеток. На одной рецепторной клетке могут быть окончания нескольких нервных волокон, а одно волокно кабельного типа может иннервировать несколько вкусовых почек.

В формировании вкусовых ощущений принимают участие неспецифические афферентные окончания (тактильные, болевые, температурные), имеющиеся в слизистой оболочке ротовой полости, глотке, возбуждение которых добавляет окраску вкусовых ощущений («острый вкус перца» и др.).

Поддерживающие эпителиоциты (epitheliocytus sustentans) отличаются наличием овального ядра с большим количеством гетерохроматина, расположенного в базальной части клетки. В цитоплазме этих клеток много митохондрий, мембран гранулярной эндоплазматической сети и свободных рибосом. Около аппарата Гольджи встречаются гранулы, содержащие гликозаминогликаны. На вершине клеток имеются микроворсинки.

Базальные малодифференцированные клетки характеризуются небольшим объемом цитоплазмы вокруг ядра и слабым развитием органелл. В этих клетках выявляются фигуры митоза. Базальные клетки в отличие от сенсоэпителиальных и поддерживающих клеток никогда не достигают поверхности эпителиального слоя. Из этих клеток, видимо, развиваются поддерживающие и сенсоэпителиальные клетки.

Периферические (перигеммальные) клетки имеют серповидную форму, содержат мало органелл, но в них много микротрубочек и нервных окончаний.

Промежуточная часть вкусового анализатора. Центральные отростки ганглиев лицевого, языкоглоточного и блуждающего нервов вступают в ствол головного мозга к ядру одиночного пути, где находится второй нейрон вкусового пути. Здесь может происходить переключение импульсов на эфферентные пути к мимической мускулатуре, слюнным железам, к мышцам языка. Большая часть аксонов ядра одиночного пути достигает таламуса, где находится 3-й нейрон вкусового пути, аксоны которого заканчиваются на 4-м нейроне в коре большого мозга нижней части постцентральной извилины (центральная часть вкусового анализатора). Здесь формируются вкусовые ощущения.

Регенерация. Сенсорные и поддерживающие эпителиоциты вкусовой почки непрерывно обновляются. Продолжительность их жизни примерно 10 сут. При разрушении вкусовых сенсорных эпителиоцитов нейроэпителиальные синапсы прерываются и вновь образуются на новых клетках.

Восприятие запахов нельзя измерить непосредственно. Вместо этого используют непрямые методы, такие как оценка интенсивности (как сильно ощущается запах?), определение порога восприятия (то есть при какой силе запах начинает ощущаться) и сравнение с другими запахами (на что похож данный запах?). Обычно наблюдается прямая зависимость между порогом восприятия и чувствительностью.

Существует большая группа нарушений работы обонятельного анализатора, а также индивидуальная сниженная чувствительность к запахам, иногда доходящая до аносмии .

  • Более подробно см. статью Запах и Расстройства обоняния

Американские учёные Ричард Аксель и Линда Бак получили в 2004 году Нобелевскую премию за исследование обоняния человека .

Запаховыми апеллянтами , аттрактантами , пахучими приманками именуются вещества, привлекающие животных своим запахом. Телергонами и феромонами - химические вещества, выделяемые животным в окружающую среду для воздействия, на другие организмы. Мускусами условно называли секреты специфических кожных желез, обычно имеющие сильный запах. Последние для краткости иногда именовали пахучими железами. К продуктам экскреции могут быть отнесены слюна, мускусы и т. д.; а также урина (моча) и экскременты. Под маркировочной активностью понимается поведение зверей, связанное с оставлением пахучих отметок продуктами экскреции, мускусами и т. д.

Эволюция обоняния

С эволюционной точки зрения обоняние одно из самых древних и важнейших чувств, при помощи которого животные ориентируются в окружающей их среде. Этот анализатор является одним из главных у многих животных. «Он предшествовал всем другим чувствам, с помощью которых животное могло на расстоянии ощущать присутствие пищи, особей противоположного пола или приближение опасности» (Милн Л., Милн М., 1966). Выделяют три основных аспекта обонятельного поведения животных: ориентацию (как звери ищут запахи), реакцию (как реагируют на их источники и относятся к ним) и сигнализацию (как используют запахи для общения между собой). В филогенезе обоняние человека ухудшается.

Связь обоняния у человека с полом

Обоняние зависит от пола, и женщины обычно превосходят мужчин по чувствительности, узнаванию и различению запахов. В очень небольшом количестве работ отмечено превосходство мужского пола. В исследовании Тулуза и Вахида было обнаружено, что женщины могли лучше мужчин определять запахи камфоры, цитрала, розовой и вишневой воды, мяты и анетола. Аналогичные результаты были получены в ряде последующих работ. ЛеМагнен обнаружил, что женщины были более чувствительны к запаху тестостерона, но не обнаружил различий к запахам сафрола, гуаякола, амилсалицилата и эвкалипта. Более поздние исследования обнаружили различия к запахам многих веществ включая цитрал, амилацетат, производные андростенона, экзалтолид, фенилэтиловый спирт, m-ксилен и пиридин. Колега и Костер провели эксперименты с несколькими сотнями веществ. У девяти веществ порог обоняния был ниже у женщин. Они также обнаружили, что девочки превосходили мальчиков по ряду тестов различения запахов.

Известно, что обоняние женщин, не принимающих гормональных противозачаточных средств, меняется в течение менструального цикла. Наиболее острым обоняние делается в период незадолго до и после овуляции, например чувствительность к мужским феромонам возрастает в тысячи раз. У женщин же, принимающих противозачаточные таблетки, обоняние остается постоянным на протяжении всего цикла. В исследовании приняли участие женщины от 18 до 40 лет, которым было предложено различить запахи аниса, мускуса, гвоздики, нашатыря и цитруса.

Связь обоняния у человека с возрастом

У новорожденных младенцев обоняние развито сильно, но за один год жизни оно теряется на 40-50 %. Исследование проведенное на основе опроса 10.7 млн человек показало уменьшение чувствительности обоняния с возрастом по всем 6 исследованным запахам. Способность к различению запахов также уменьшалась. Влияние возраста было более значимо, чем влияние пола, причем женщины сохраняли обоняние до более старшего возраста, чем мужчины.

Было показано, что с возрастом происходит атрофия обонятельных волокон и их количество в обонятельном нерве неуклонно уменьшается (таблица).

Латерализация обоняния

Первичная обработка сигналов из стимулированной ноздри происходит на той же стороне тела (ипсилатерально), при этом связанные с обонянием области в коре являются прямой проекцией участков обонятельного эпителия.

Абсолютная чувствительность

Изучение абсолютной чувствительности во многих случаях обнаруживало конфликтные результаты. При определении порога восприятия, левая ноздря была более чувствительна у леворуких испытуемых, тогда как правая ноздря-у праворуких. Кэйн и Гент обнаружили большую чувствительность правой ноздри независимо от рукости, однако в работах других авторов не было найдено никаких различий. В двух последних работах авторы использовали фенилэтиловый спирт, для которого характерна слабая активность в отношении тройничного нерва. На результаты экспериментов также может влиять переключение доминантности ноздрей в течение дня каждые 1.5-2 часа. Можно заключить, что правая ноздря обладает несколько большей чувствительностью по крайней мере у праворуких.

Различение запахов

Результаты по различению запахов также как и по абсолютной чувствительности неоднозначны, но говорят о некотором превосходстве правой ноздри. Ряд авторов обнаружили преимущество правой ноздри независимо от рукости. Однако другие авторы обнаружили преимущество левой ноздри у леворуких испытуемых. В работе Савика и Берглунда преимущество правой ноздри было установлено только для знакомых запахов, тогда как Броман показал её преимущество также и для незнакомых запахов. Преимущество правой ноздри было показано при изучении категоризации запахов по интенсивности, хотя эти результаты были достоверны только для женщин.

Память на запахи

Различия между полушариями в распознавании запахов были более последовательны. Так пациенты с поражениями правого полушария распознавали запахи хуже пациентов с поражениями левого полушария, что может говорить о превосходстве правого полушария. В тестах по словесному и визуальному распознаванию запахов на здоровых испытуемых, когда первый стимул (запах) предлагался обеим сторонам, время реакции было меньше когда второй стимул (слово или картинка) предлагался правому полушарию по сравнению с левым. Олсон и Кэйн обнаружили только более короткий ответ правой ноздри на предлагаемые запахи и не обнаружили разницы в совершенстве памяти. Другие авторы не обнаружили никаких различий в распознавании запахов.

Идентификация запахов

Пациенты с разобщенными полушариями могли словесно распознавать запахи предлагаемые только левой ноздре и могли распознавать запахи, предлагаемые правой ноздре невербально. При этом левое полушарие имело преимущество как в вербальном, так и в невербальном распознавании запахов.

Примечания

  1. Тайна запаха
  2. Корытин С. А. (2007) Поведение и обоняние хищных млекопитающих. Изд. 2. 224 с.
  3. Brand G., Millot J-L. (2001) Sex differences in human olfaction: Between evidence and enigma. The Quarterly Journal of Experimental Psychology B, 54 N. 3, 1 August 2001, pp. 259-270.
  4. Cain, W.S. (1982). Odor identification by males and females: predictions vs. performance. Chemical Senses, 7 p. 129-142.
  5. Doty, R.L., Applebaum, S., Zusho, H. & Settle, R.G. (1985). Sex differences in odor identification ability: a cross-cultural analysis. Neuropsychologia, 23 p. 667-672.
  6. Engen, T. (1987). Remembering odors and their names. American Scientist, 75 p. 497-502.
  7. Larsson, M., Lövdén, M. & Nilsson, L.G. (2003). Sex differences in recollective experience for olfactory and verbal information. Acta Psychologica, 112 p. 89-103.
  8. Bailey E. H. S., Powell L. M. (1885) Some special tests in regard to the delicacy of the sense of smell. Trans Kans Acad. Sci. 9 p. 100-101.
  9. Amoore J. E., Venstrom D. (1966) Sensory analysis of odor qualities in terms of the stereochemical theory. J. Food Sci. 31 p. 118-128.
  10. Venstrom D. Amoore J. E. (1968) Olfactory threshold in relation to age, sex or smoking. J. Food Sci. 33 p. 264-265.
  11. Toulouse, E. and Vaschide, N. (1899) Mesure de l’odorat chex l’homme et chez la femme. Comptes Rendue des Sceances de la Societe de Biologie et de Ses Filiales, 51 p. 381-383.
  12. Kloek J. (1961). The smell of some steroid sex-hormones and their metabolites: reflections and experiments concerning the significance of smell for the mutual relation of the sexes. Psychiat. Neurol. Neurochir. 64 p. 309-344.
  13. Doty R. L. et al. (1984) Science 226 p. 1441-1443.
  14. Le Magnen J. (1952) Les phenomenes olfacto-sexuels chex l’homme. Archives des Sciences Physiologiques, 6 p. 125-160.
  15. Deems D. A., Doty R. L. (1987) Age-related changes in the phenyl ethyl alcohol odor detection threshold. Trans Penn Acad. Opthamol. Otolaryngol. 39 p. 646-650.
  16. Koelega H. S., Koster E. P. (1974) Some experiments on sex differences in odor perception, Ann. NY Acad. Sci. 237 p. 234-246.
  17. Schneider R. A. and Wolf S. (1955) Olfactory perception thresholds for citral utilizing a new type olfactorium. Journal of Applied Physiology. 8 p. 337-342.
  18. Navarrete-Palacios E., Hudson R., Reyes-Guerrero G., Guevara-Guzman R. (2003) Lower olfactory threshold during the ovulatory phase of the menstrual cycle. Biol. Psychol. Jul 63 N 3 p. 269-79. PMID 12853171
  19. Gilbert A. N., Wysocki C. J. (1987) The Smell Survey Results. National Geographic 122 p. 514-525.
  20. Doty R. L., Kligman A., Leyden J., e.a. (1978) Communication of gender from human axillary odors: Relationship to perceived intensity and hedoncity. Behav. Biol. 23 p. 373-380.
  21. Блинков С. М., Глезер И. И. (1964) Мозг человека в цифрах и таблицах. Л. 180 с.
  22. Smith C. G. (1942) Age incidence of atrophy of olfactory nerves in man. J. Comp. Neurol. 77 N 3, p. 589-596.
  23. Youngentob S. L., Kurtz D. B., Leopold D. A., et.al. (1982) Olfactory sensitivity: Is there laterality? Chemical Senses. 7 p. 11-21.
  24. Cain W. S., Gent J. F. (1991) Olfactory sensitivity: reliability, generality, and association with age. Journal of Experimental Psychology: Human Perception and Performance. 17 p. 382-391.
  25. Koelega H. S. (1979). Olfaction and sensory asymmetry. Chemical Senses. 4 p. 89-95.
  26. Zatorre R. J., Jones-Gotman M. (1990) Right-nostril advantage for discrimination of odor. Perception & Psychophysics. 47 p. 526-531.
  27. Betchen S. A., Doty R. L. (1998) Bilateral detection thresholds in dextrals and sinistrals reflect the more sensitive side of the nose, which is not lateralized. Chemical Senses. 23 p. 453-457.
  28. Doty R. L., Brugger W. E., Jurs P. C., et. al. (1978) Intranasal trigeminal stimulation from odorous volatiles: psychometric responses from anosmic and normal humans. Physiology and Behavior. 20 p. 175-185.
  29. Zatorre, R.J., Jones-Gotman, M. (1990). Right-nostril advantage for discrimination of odor. Perception & Psychophysics. 47 p. 526-531.
  30. Martinez B.A., Cain W.S., de Wijk R.A., et.al. (1993). Olfactory functioning before and after temporal lobe resection for intractable seizures. Neuropsychology. 7 p. 351-363.
  31. Hummel T., Mohammadian P. and Kobal G. (1998). Handedness is a determining factor in lateralized olfactory discrimination. Chemical Senses, 23 p. 541-544.
  32. Savic I., Berglund H. (2000). Right-nostril dominance in discrimination of unfamiliar, but not familiar, odours. Chemical Senses, 25 p. 517-523.
  33. Broman D. A. (2006). Lateralization of human olfaction: cognitive functions and electrophysiology. Doctorial dissertation from the Department of Psychology, Umeå University, SE-90187, Umeå, Sweden: ISBN 91-7264-166-5.
  34. Pendense S. G. (1987). Hemispheric asymmetry in olfaction on a category judgment task. Perceptual and Motor Skills, 64 p. 495-498.
  35. Abraham A., Mathai K. V. (1983) The effect of right temporal lobe lesions on matching smells. Neuropsychologia, 21 p. 277-281.
  36. Jones-Gotman M., Zatorre R. J. (1993) Odor recognition memory in humans: role of right temporal and orbitofrontal regions. Brain and Cognition, 22 p. 182-198.
  37. Rausch R., Serafetinides E. A. and Crandall P. H. (1977) Olfactory memory in patients with anterior temporal lobectomy. Cortex, 13 p. 445-452.
  38. Zucco G. M., Tressoldi P. E. (1989) Hemispheric differences in odour recognition. Cortex, 25 p. 607-615.
  39. Olsson M. J., Cain W. S. (2003) Implicit and explicit memory for odors: Hemispheric differences. Memory and Cognition, 31 p. 44-50.

ОБОНЯТЕЛЬНАЯ СИСТЕМА И ЕЁ СЕНСОРНАЯ ХАРАКТЕРИСТИКА Обоняние - способность различать в ощущениях и восприятии химический состав различных веществ и их соединений с помощью соответствующих рецепторов. С участием обонятельного рецептора происходит ориентация в окружающем пространстве и происходит процесс познания внешнего мира.

ОБОНЯТЕЛЬНАЯ СИСТЕМА И ЕЁ СЕНСОРНАЯ ХАРАКТЕРИСТИКА Органом обоняния служит обонятельный нейроэпителий, возникающий как выпячивание мозговой трубки и содержащий обонятельные клетки – хеморецепторы, которые возбуждаются газообразными веществами.

ХАРАКТЕРИСТИКА АДЕКВАТНОГО РАЗДРАЖИТЕЛЯ Адекватным раздражителем для обонятельной сенсорной системы является запах, который издаётся пахучими веществами. Все пахучие вещества, обладающие запахом, должны быть летучими, чтобы поступать в носовую полость с воздухом, и водорастворимыми, чтобы проникать к рецепторным клеткам через слой слизи, покрывающей весь эпителий носовых полостей. Таким требованиям удовлетворяет огромное количество веществ, и поэтому человек способен различать тысячи всевозможных запахов. Важно, что при этом отсутствует строгое соответствие между химической структурой "душистой" молекулы и её запахом.

ФУНКЦИИ ОБОНЯТЕЛЬНОЙ СИСТЕМЫ (ОСС) С участием обонятельного анализатора осуществляется: 1. Детекция пищи на привлекательность, съедобность и несъедобность. 2. Мотивация и модуляция пищевого поведения. 3. Настройка пищеварительной системы на обработку пищи по механизму безусловных и условных рефлексов. 4. Запуск оборонительного поведения за счёт детекции вредные для организма вещества или веществ, связанных с опасностью. 5. Мотивация и модуляция полового поведения за счёт детекции пахучих веществ и феромонов.

СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ХАРАКТЕРИСТИКА ОБОНЯТЕЛЬНОГО АНАЛИЗАТОРА. - Периферический отдел образуют рецепторы верхнего носового хода слизистой оболочки носовой полости. Обонятельные рецепторы в слизистой носа оканчиваются обонятельными ресничками. Газообразные вещества растворяются в слизи, окружающей реснички, затем в результате химической реакции возникает нервный импульс. - Проводниковый отдел - обонятельный нерв. По волокнам обонятельного нерва импульсы поступают на обонятельную луковицу (структуру переднего мозга, в которой осуществляется обработка информации) и далее следуют в корковый обонятельный центр. - Центральный отдел - корковый обонятельный центр, расположенный на нижней поверхности височной и лобной долей коры больших полушарий. В коре происходит определение запаха и формируется адекватная на него реакция организма.

ПЕРИФЕРИЧЕСКИЙ ОТДЕЛ Этот отдел начинается с первично-чувствующих обонятельных сенсорных рецепторов, которые являются окончаниями дендрита так называемой нейросенсорной клетки. По своему происхождению и строению обонятельные рецепторы являются типичными нейронами, способными к генерации и передаче нервных импульсов. Но дальняя часть дендрита такой клетки изменена. Она расширена в "обонятульную булаву", от которой отходят 6– 12 ресничек, в то время как от основания клетки отходит обычный аксон. У человека имеется около 10 млн обонятельных рецепторов. Кроме того, дополнительные рецепторы находятся помимо обонятельного эпителия также в дыхательной области носа. Это свободные нервные окончания сенсорных афферентных волокон тройничного нерва, которые также реагируют на пахучие вещества.

Реснички, или обонятельные волоски, погружены в жидкую среду – слой слизи, вырабатываемой боуменовыми железами носовой полости. Наличие обонятельных волосков значительно увеличивает площадь контакта рецептора с молекулами пахучих веществ. Движение волосков обеспечивает активный процесс захвата молекул пахучего вещества и контакта с ним, что лежит в основе целенаправленного восприятия запахов. Рецепторные клетки обонятельного анализатора погружены в обонятельный эпителий, выстилающий полость носа, в котором кроме них имеются опорные клетки, выполняющие механическую функцию и активно участвующие в метаболизме обонятельного эпителия. Часть опорных клеток, располагающихся вблизи базальной мембраны, носит название базальных.

Рецепцию запахов осуществляют 3 типа обонятельных нейронов: 1. Обонятельные рецепторные нейроны (ORNs) в основном эпителии. 2. GC-D-нейроны в основном эпителии. 3. Вомероназальные нейроны (VNNs) в вомероназальном эпителии. Вомероназальный орган, как считается, отвечает за восприятие феромонов, летучих веществ, которые обеспечивают социальные контакты и половое поведение. Недавно же было установлено, что рецепторные клетки вомероназального органа выполняют также функцию детекции хищников по его запаху. На каждый вид хищника существует свой особый рецептор-детектор. Указанные три типа нейронов отличаются друг от друга по способу трансдукции и рабочим белкам, а также по своим сенсорным путям. Молекулярными генетиками открыто около 330 генов, контролирующих обонятельные рецепторы. Они кодируют около 1000 рецепторов основного обонятельного эпителия и 100 рецепторов вомероназального эпителия, которые чувствительны к феромонам

ПЕРИФЕРИЧЕСКИЙ ОТДЕЛ ОБОНЯТЕЛЬНОГО АНАЛИЗАТОРА: А - схема строения носовой полости: 1 - нижний носовой ход; 2 - нижняя, 3 - средняя и 4 - верхняя носовые раковины; 5 - верхний носовой ход; Б - схема строения обонятельного эпителия: 1 - тело обонятельной клетки, 2 - опорная клетка; 3 - булава; 4 - микроворсинки; 5 - обонятельные нити

ПРОВОДНИКОВЫЙ ОТДЕЛ Первым нейроном обонятельного анализатора следует считать ту же обонятельную нейросенсорную, или нейрорецепторную, клетку. Аксоны этих клеток собираются в пучки, пронизывают базальную мембрану обонятельного эпителия и входят в состав немиелизированных обонятельных нервов. Они образует на своих окончаниях синапсы, называемые гломерулами. В гломерулах аксоны рецепторных клеток контактируют с главным дендритом митральных нервных клеток обонятельной луковицы, которые представляют собой второй нейрон. Обонятельные луковицы лежат на базальной (нижней) поверхности лобных долей. Их относят либо к древней коре, либо выделяют в особую часть обонятельного мозга. Важно отметить, что обонятельные рецепторы, в отличие от рецепторов других сенсорных систем, не дают топической пространственной проекции на луковице, благодаря своим многочисленным конвенгентным и дивергентным связям.

Аксоны митральных клеток обонятельных луковиц образуют обонятельный тракт, который имеет треугольное расширение (обонятельный треугольник) и состоит из нескольких пучков. Волокна обонятельного тракта отдельными пучками идут из обонятельных луковиц в обонятельные центры высшего порядка, например, в передние ядра таламуса (зрительного бугра). Однако большинство исследователей считает, что отростки второго нейрона идут прямо в кору большого мозга, минуя таламус. Но обонятельная сенсорная система не даёт проекций в новую кору (неокортекс), а только в зоны архи- и палеокортекса: в гиппокамп, лимбическую кору, миндалевидный комплекс. Эфферентный контроль осуществляется с участием перигломерулярных клеток и клеток зернистого слоя, находящихся в обонятельной луковице, которые образуют эфферентные синапсы с первичными и вторичными дендритами митральных клеток. При этом может быть эффект возбуждения или торможения афферентной передачи. Некоторые эфферентные волокна приходят из контралатеральной луковицы через переднюю комиссуру. Нейроны, отвечающие на обонятельные стимулы, обнаружены в ретикулярной формации, имеется связь с гиппокампом и вегетативными ядрами гипоталамуса. Связь с лимбической системой объясняет присутствие эмоционального компонента в обонятельном восприятии, например, приносящие удовольствие, или гедонические, компоненты ощущения запахов.

ЦЕНТРАЛЬНЫЙ, ИЛИ КОРКОВЫЙ, ОТДЕЛ Центральный отдел состоит из обонятельной луковицы, связанной ветвями обонятельного тракта с центрами, которые расположены в палеокортексе (древней коре больших полушарий головного мозга) и в подкорковых ядрах, а так же корковый отдел, который локализован в височных долях мозга, извилине морского коня. Центральный, или корковый, отдел обонятельного анализато а локализуется в передней части грушевидной р доли коры в обла ти извилины морского коня. с

КОДИРОВАНИЕ ОБОНЯТЕЛЬНОЙ ИНФОРМАЦИИ Итак, каждая отдельная рецепторная клетка способна реагировать на значительное число различных пахучих веществ. В связи с этим различные обонятельные рецепторы имеют перекрывающиеся профили ответов. Каждое пахучее вещество дает специфическую комбинацию реагирующих не него обонятельных рецепторов и соответствующую картину (паттерн) возбуждения в популяции этих рецепторных клеток. При этом уровень возбуждения зависит от концентрации пахучего вещества-раздражителя. При действии пахучих веществ в очень малых концентрациях возникающее ощущение не специфично, а в более высоких концентрациях выявляется запах и происходит его идентификация. Поэтому следует различать порог появления запаха и порог его распознавания. В волокнах обонятельного нерва обнаружена постоянная импульсация, обусловленная подпороговым воздействием пахучих веществ. При пороговой и сверхпороговой концентрациях различных пахучих веществ возникают разные паттерны электрических импульсов, которые приходят одновременно в различные участки обонятельной луковицы. При этом в обонятельной луковице создаётся своеобразная мозаика из возбуждённых и невозбуждённых участков. Предполагают, что это явление лежит в основе кодирования информации о специфичности запахов.

РАБОТА ОБОНЯТЕЛЬНОЙ (ОЛЬФАКТОРНОЙ) СЕНСОРНОЙ СИСТЕМЫ 1. Движение химического раздражения (раздражителя) к сенсорным рецепторам. Находящееся в воздухе вещество-раздражитель по воздухоносным путям попадает в носовую полость → достигает обонятельного эпителия →растворяется в слизи, окружающей реснички рецепторных клеток→одним из своих активных центров связывается с молекулярным рецептором (белком), встроенном в мембрану обонятельной нейросенсорной клетки (обонятельного сенсорного рецептора). 2. Трансдукция химического раздражения в нервное возбуждение. Присоединение молекулы-раздражителя (лиганда) к молекуле-рецептору →изменяется конформация молекулы-рецептора→запускается каскад биохимических реакций с участием G-белка и аденилатциклазы→производится ц. АМФ (циклический аденозинмонофосфат)→активируется протеин-киназа→она фосфорилирует и открывает в мембране ионные каналы, проницаемые для трёх видов ионов: Na+, K+, Ca 2+→. . . →возникает локальный электрический потенциал (рецепторный)→рецепторный потенциал достигает порогового значения (критического уровня деполяризации)→порождается (генерируется) потенциал действия и нервный импульс.

3. Движение афферентного обонятельного сенсорного возбуждения к низшему нервному центру. Нервный импульс, возникший в результате трансдукции в нейросенсорной обонятельной клетке, бежит по её аксону в составе обонятельного нерва в обонятельную луковицу (обонятельный низший нервный центр). 4. Трансформация в низшем нервном центре афферентного (входящего) обонятельного возбуждения в эфферентное (выходящее) возбуждение. 5. Движение эфферентного обонятельного возбуждения из низшего нервного центра в высшие нервные центры. 6. Перцепция - построение сенсорного образа раздражения (раздражителя) в виде ощущения запаха.

АДАПТАЦИЯ ОБОНЯТЕЛЬНОГО АНАЛИЗАТОРА Адаптацию обонятельного анализатора можно наблюдать при длительном действии запахового раздражителя. Адаптация к действию пахучего вещества происходит довольно медленно в течении 10 секунд или минут и зависит от продолжительности действия вещества, его концентрации и скорости потока воздуха (принюхивание). По отношению ко многим пахучим веществам довольно быстро наступает полная адаптация, т. е. их запах перестает ощущаться. Человек перестает замечать такие непрерывно действующие раздражители, как запах своего тела, одежды, комнаты и т. п. По отношению к ряду веществ адаптация происходит медленно и лишь частично. При кратковременном действии слабого вкусового или обонятельного раздражителя: адаптация может проявиться в повышении чувствительности соответствующего анализатора. Установлено, что изменения чувствительности и явления адаптации в основном происходят не в периферическом, а в корковом отделе вкусового и обонятельного анализаторов. Иногда, особенно при частом действии одного и того же вкусового или обонятельного раздражителя, в коре больших полушарий возникает стойкий очаг повышенной возбудимости. В таких случаях ощущение вкуса или запаха, к которому возникла повышенная возбудимость, может появляться и при действии различных других веществ. Мало того, ощущение соответствующего запаха или вкуса может стать назойливым, появляясь и при отсутствии каких-либо вкусовых или запаховых раздражителей, иными словами, возникают иллюзии, и галлюцинации. Если во время обеда сказать, что блюдо протухло или прокисло, то у некоторых людей появляются соответствующие обонятельные и вкусовые ощущения, в результате чего они отказываются от еды. Адаптация к одному запаху не снижает чувствительности к одорантам другого вида, т. к. различные пахучие вещества действуют на разные рецепторы.

ВИДЫ НАРУШЕНИЯ ОБОНЯНИЯ: 1) аносмия – отсутствие; 2) гипосмия – понижение; 3) гиперосмия – повышение обонятельной чувствительности; 4) паросмия – неправильное восприятие запахов; 5) нарушение дифференцировки; 5) обонятельные галлюцинации, когда возникают обонятельные ощущения при отсутствии пахучих веществ; 6) обонятельная агнозия, когда человек ощущает запах, но его не узнает. С возрастом наблюдаются в основном снижение обонятельной чувствительности, а также другие виды функциональных расстройств обоняния.

С участием обонятельного анализатора осуществляется ориен­тация в окружающем пространстве и происходит процесс позна­ния внешнего мира. Он оказывает влияние на пищевое поведение, принимает участие в апробации пищи на съедобность, в на­стройке пищеварительного аппарата на обработку пищи (по ме­ханизму условного рефлекса), а также - на оборонительное по­ведение, помогая избежать опасности благодаря способности раз­личать вредные для организма вещества.

Структурно-функциональная характеристика обонятельного анализатора .

Периферический отдел образуют рецепторы верхнего носового хода слизистой оболочки носовой полости. Обонятельные рецепторы в слизистой носа оканчиваются обонятельными ресничками. Газообразные вещества растворяются в слизи, окружающей реснички, затем в результате химической реакции возникает нервный импульс.

Проводниковый отдел - обонятельный нерв. По волокнам обонятельного нерва импульсы поступают на обонятельную луковицу (структуру переднего мозга, в которой осуществляется обработка информации) и далее следуют в корковый обонятельный центр.

Центральный отдел - корковый обонятельный центр, расположенный на нижней поверхности височной и лобной долей коры больших полушарий. В коре происходит определение запаха и формируется адекватная на него реакция организма.

Обонятельный анализатор включает:

Периферический отдел анализатора располагается в толще слизистой оболочки верхнего носового хода и представлен веретенообразными клетками, имеющими по два отростка. Один отросток достигает поверхности слизистой, заканчиваясь здесь утолщением, другой (вместе с другими нитями-отростками) составляет проводниковый отдел. Периферический отдел обонятельного анализатора - это первично-чувству­ющие рецепторы, которые являются окончаниями нейросекреторной клетки. Верхняя часть каждой клетки несет 12 ресничек, а от основания клетки отходит аксон. Реснички погружены в жидкую среду - слой слизи, вырабатываемой боуменовыми железами. Наличие обонятель­ных волосков значительно уве­личивает площадь контакта рецептора с молекулами пахучих веществ. Движение волосков обес­печивает активный процесс захвата молекул пахучего вещества и контакта с ним, что лежит в основе целенаправленного вос­приятия запахов. Рецепторные клетки обонятельного анализа­тора погружены в обонятельный эпителий, выстилающий по­лость носа, в котором кроме них имеются опорные клетки, вы­полняющие механическую функцию и активно участвующие в метаболизме обонятельного эпителия.



Периферическая часть обонятельного анализатора расположена в слизистой оболочке верхнего носового хода и противолежащей части носовой пере­городки.Она представлена обонятельными и опорными клетками. Вокруг каждой опорной клетки расположено 9-10 обо­нятельных. Обонятельные клетки покрыты волосками, которые представляют собой нити длиной 20-30 мкм. Они сги­баются и разгибаются со скоростью 20-50 раз в 1 мин. Внутри волосков расположены фибриллы, которые обычно заходят в утол­щение - пуговку, имеющуюся на конце волоска. В теле обонятель­ной клетки и в ее периферическом отростке расположено большое количество микротрубочек диаметром 0,002 мкм, предполагают, что они осуществляют связь между различными органеллами клетки. Тело обонятельной клетки богато РНК, которая образует возле ядра плотные скопления. После воздействия паров пахучих

Рис. 70. Периферический отдел обонятельного анализатора:

д - схема строения носовой полости: 1 - нижний носовой ход; 2 - нижняя, 3 - средняя и 4 - верхняя носовые раковины; 5 - верхний носовой ход; Б - схема строения обонятельного эпителия: 1 - тело обонятельной клетки, 2 - опорная клетка; 3 - булава; 4 - микроворсинки; 5 - обонятельные нити.

веществ происходит их разрыхление и частичное исчезновение, что говорит о том, что функция обонятельных клеток сопровождается изменениями в распределении РНК и в ее количестве.

Обонятельная клетка имеет два отростка. Один из них через отверстия продырявленной пластинки решетчатой кости направ­ляется в полость черепа к обонятельным луковицам, в которых возбуждение передается на расположенные там нейроны. Их во­локна образуют обонятельные пути, которые подходят к различ­ным отделам ствола мозга. Корковый отдел обонятельного анализа­тора находится в гиппокамповой извилине и в аммоновом роге.

Второй отросток обонятельной клетки имеет форму палочки шириной 1 мкм, длиной 20-30 мкм и заканчивается обонятель­ным пузырьком - булавой, диаметр которой 2 мкм. На обонятель­ном пузырьке расположено 9-16 ресничек.

Проводниковый отдел представлен проводящими нервными путями в виде обонятельного нерва, ведущие к обонятельной луковице (образование овальной формы). Проводниковый отдел. Первым нейроном обонятельного ана­лизатора следует считать нейросенсорную или нейрорецепторную клетку. Аксон этой клетки образует синапсы, называемые гломерулами, с главным дендритом митральных клеток обоня­тельной луковицы, которые представляют второй нейрон. Аксо­ны митральных клеток обонятельных луковиц образуют обоня­тельный тракт, который имеет треугольное расширение (обоня­тельный треугольник) и состоит из нескольких пучков. Волокна обонятельного тракта отдельными пучками идут в передние ядра зрительного бугра.

Центральный отдел состоит из обонятельной луковицы, связанной ветвями обонятельного тракта с центрами, которые расположены в палеокортексе (древней коре больших полушарий головного мозга) и в подкорковых ядрах, а так же корковый отдел, который локализован в височных долях мозга, извилине морского коня.

Центральный, или корковый, отдел обонятельного анализато­ра локализуется в передней части грушевидной доли коры в обла­сти извилины морского коня.

Восприятие запахов. Молекулы пахучего вещества взаимодей­ствуют со специализированными белками, встроенными в мемб­рану обонятельных волосковых нейросенсорных рецепторных кле­ток. При этом происходит адсорбция раздражителей на хеморецепторной мембране. Согласно стереохимической теории этот кон­такт возможен в том случае, если форма молекулы пахучего вещества соответствует форме рецепторного белка в мембране (как ключ и замок). Слизь, покрывающая поверхность хеморецептора, является структурированным матриксом. Она контролирует до­ступность рецепторной поверхности для молекул раздражителя и способна изменять условия рецепции. Современная теория обоня­тельной рецепции предполагает, что начальным звеном этого процесса могут быть два вида взаимодействия: первое - это кон­тактный перенос заряда при соударении молекул пахучего веще­ства с рецептивным участком и второе - образование молекуляр­ных комплексов и комплексов с переносом заряда. Эти комплек­сы обязательно образуются с белковыми молекулами рецептор­ной мембраны, активные участки которых выполняют функции доноров и акцепторов электронов. Существенным моментом этой теории является положение о многоточечных взаимодействиях молекул пахучих веществ и рецептивных участков.

Особенности адаптации обонятельного анализатора. Адаптация к действию пахучего вещества в обонятельном анализаторе зависит от скорости потока воздуха над обонятельным эпителием и концентрации пахучего вещества. Обычно адаптация проявляется по отношению к одному запаху и может не затрагивать другие запахи.

Восприятие обонятельных раздражений. Обонятельные реце­пторы обладают очень большой чувствительностью. Для возбуж­дения одной обонятельной клетки человека достаточно от 1 до 8 молекул пахучего вещества (бутилмеркаптана). Механизм вос­приятия запахов до настоящего времени еще не установлен. Пред­полагают, что обонятельные волоски являются как бы специализи­рованными антеннами, которые активно участвуют в поиске и восприятии пахучих веществ. Относительно механизма восприятия существуют разные точки зрения. Так, Эймур (1962) считает, что на поверхности волосков обонятельных клеток расположены особые рецептивные участки в виде ямок, щелей определенного размера и определенным образом заряженных. Молекулы различных паху­чих веществ имеют форму, размер и заряд, комплементарные раз­личным участкам обонятельной клетки, и это обусловливает разли­чение запахов.

Некоторые исследователи полагают, что обонятельный пигмент, имеющийся в обонятельной рецептивной зоне, также участвует в восприятии обонятельных раздражений, как пигмент сетчатки при восприятии зрительных раздражений. Согласно этим представле­ниям окрашенные формы пигмента содержат возбужденные элек­троны. Пахучие вещества, действуя на обонятельный пигмент, вызывают переход электронов на более низкий энергетический уровень, что сопровождается обесцвечиванием пигмента и осво­бождением энергии, которая затрачивается на возникновение импульсов.

Биопотенциалы возникают в булаве и распространяются далее по обонятельным путям до коры головного мозга.

Молекулы пахучего вещества связываются с рецепторами. Сигналы от рецепторных клеток поступают в гломерулы (клубочки) обонятельных луковиц - небольших органов, расположенных в нижней части мозга прямо над носовой полостью. В каждой из двух луковиц содержится примерно 2000 гломерул - в два раза больше, чем существует видов рецепторов. Клетки, обладающие рецепторами одного вида, отправляют сигнал в одни и те же клубочки луковиц. Из гломерул сигналы передаются в митральные клетки - крупные нейроны, а далее в особые области мозга, где информация от разных рецепторов комбинируется, формируя общую картину.

По теории Дж. Эймура и Р. Монкриффа (стереохимическая теория) запах вещества определяется формой и размером пахучей молекулы, которая по конфигурации подходит к рецепторному участку мембраны «как ключ к замку». Концепция рецепторных участков разного типа, взаимодействующих с конкретными молекулами одорантов предлагает наличие рецептивных участков семи типов (по типам запахов: камфорные, эфирные, цветочные, мускусные, острые, мятные, гнилостные). Рецептивные участки плотно контактируют с молекулами одоранта, при этом изменяется заряд участка мембраны и в клетке возникает потенциал.

По Эймуру весь букет запахов создается сочетанием этих семи составляющих. В апреле 1991 года сотрудники Института им. Говарда Хьюза (Колумбийский университет) Ричард Аксель и Линда Бак выяснили, что строение рецепторных участков мембраны обонятельных клеток генетически запрограммировано, и таких специфических участков имеется более 10 тыс. видов. Таким образом, человек способен воспринимать более 10 тыс. запахов.

Адаптацию обонятельного анализатора можно наблюдать при длительном действии запахового раздражителя. Адаптация к действию пахучего вещества происходит довольно медленно в течении 10 секунд или минут и зависит от продолжительности действия вещества, его концентрации и скорости потока воздуха (принюхивание).

По отношению ко многим пахучим веществам довольно быстро наступает полная адаптация, т. е. их запах перестает ощущаться. Человек перестает замечать такие непрерывно действующие раздражители, как запах своего тела, одежды, комнаты и т. п. По отношению к ряду веществ адаптация происходит медленно и лишь частично. При кратковременном действии слабого вкусового или обонятельного раздражителя: адаптация может проявиться в повышении чувствительности соответствующего анализатора. Установлено, что изменения чувствительности и явления адаптации в основном происходят не в периферическом, а в корковом отделе вкусового и обонятельного анализаторов. Иногда, особенно при частом действии одного и того же вкусового или обонятельного раздражителя, в коре больших полушарий возникает стойкий очаг повышенной возбудимости. В таких случаях ощущение вкуса или запаха, к которому возникла повышенная возбудимость, может появляться и при действии различных других веществ. Мало того, ощущение соответствующего запаха или вкуса может стать назойливым, появляясь и при отсутствии каких-либо вкусовых или запаховых раздражителей, иными словами, возникают иллюзии, и галлюцинации. Если во время обеда сказать, что блюдо протухло или прокисло, то у некоторых людей появляются соответствующие обонятельные и вкусовые ощущения, в результате чего они отказываются от еды.

Адаптация к одному запаху не снижает чувствительности к одорантам другого вида, т.к. различные пахучие вещества действуют на разные рецепторы.


44. Соматическая сенсорная система. Строение и функции кожи. Классификация рецепторов кожи. Механорецепторная и температурная чувствительность.

Соединение путей кожных и висцеральных рецепторов в спинном мозге:

1 - пучок Голля; 2 - пучок Бурдаха; 3 - задний корешок; 4 - передний корешок; 5 - спиноталамический тракт (проведение болевой чувствительности); 6 - двигательные аксоны; 7 - симпатические аксоны; 8 - передний рог; 9 - проприоспинальный путь; 10 - задний рог; И - висцерорецепторы; 12 - проприорецепторы; 13 - терморецепторы; 14 - ноцицепторы; 15 - механорецепторы http://works.tarefer.ru/10/100119/index.html

С помощью обоняния человек способен различать тысячи запахов, но тем не менее он относится к микросматикам, так как у человека эта система значительно менее развита, чем у животных, которые с ее помощью ориентируются в окружающей среде. Периферическим отделом обонятельной сенсорной системы являются рецепторные клетки в эпителиальной (обонятельной) выстилке носовой полости. Она расположена в верхней носовой раковине и соответствующей части носовой перегородки, отличается желтоватым цветом (из-за присутствия пигмента в клетках) и занимает в носовой полости около 2,5–5 см 2 . Слизистая оболочка носовой полости в области обонятельной выстилки несколько утолщена по сравнению с остальной слизистой. Она образована рецепторными и опорными клетками (см. Атл.). Обонятельные рецепторные клетки представляют собой первичночувствующие клетки. В их апикальной части расположен длинный тонкий дендрит, заканчивающийся булавовидным утолщением. От утолщения отходят многочисленные реснички, имеющие обычное строение и погруженные в слизь. Эту слизь выделяют опорные клетки и железы, лежащие под эпителиальным пластом (Боуменовы железы). В базальной части клетки расположен длинный аксон. Немиелинизированные аксоны многих рецепторных клеток образуют под эпителием довольно толстые пучки, называемые обонятельными волокнами (fila olfactoria). Эти аксоны проходят в отверстия продырявленной пластинки решетчатой кости и направляются к обонятельной луковице, лежащей на нижней поверхности головного мозга (см. рис. 3.15). Возбуждение рецепторных клеток происходит при взаимодействии стимула с ресничками, затем оно по аксону передается в мозг. Хотя обонятельные клетки являются нейронами, они, в отличие от последних, способны к обновлению. Срок жизни этих клеток составляет примерно 60 дней, после чего они дегенерируют и фагоцитируются. Замена рецепторных клеток происходит за счет деления базальных клеток обонятельной выстилки.

Проводниковый и центральный отделы обонятельной сенсорной системы. В обонятельной луковице различают пять слоев, расположенных концентрически: 1 слой образуют волокна обонятельного нерва – отростки обонятельных рецепторных клеток; 2 слой образован гломерулами диаметром 100–200 мкм, здесь происходит синаптический контакт обонятельных волокон с отростками нейронов следующего порядка, 3 слой – наружный сетевидный (плексиформный), образован перигломерулярными клетками, контактирующими с несколькими гломерулами каждая, 4 слой – внутренний сетевидный (плексиформный), содержит самые крупные клетки обонятельной луковицы – митральные клетки (второй нейрон). Это крупные нейроны, апикальные дендриты которых образуют по одной гломеруле во 2 слое, а аксоны формируют обонятельный тракт. В пределах луковицы аксоны митральных клеток образуют коллатерали, контактирующие с другими клетками. Во время электрофизиологических экспериментов было установлено, что запаховая стимуляция вызывает разную активность митральных клеток. Клетки, расположенные в различных участках обонятельной луковицы, реагируют на определенные виды запахов; 5 слой – зернистый, образуют клетки-зерна, на которых оканчиваются эфферентные волокна, приходящие из центра. Эти клетки способны контролировать активность митральных клеток. От обонятельной луковицы отходит обонятельный тракт, образованный аксонами митральных клеток. По нему обонятельные сигналы поступают в другие области мозга. Тракт оканчивается латеральной и медиальной обонятельными полосками. Через латеральную обонятельную полоску импульсы попадают главным образом в древнюю кору обонятельного треугольника, где лежит третий нейрон, а затем в миндалину. Волокна медиальной обонятельной полоски заканчиваются в старой коре подмозолистого поля, прозрачной перегородке, в клетках серого вещества в глубине борозды мозолистого тела. Обогнув последнее, они доходят до гиппокампа. Здесь берут начало волокна свода – проекционной системы старой коры, заканчивающегося частично в прозрачной перегородке и в мамиллярном теле гипоталамуса. От него начинаются мамилло-таламический путь, идущий к одному из ядер (переднему) таламуса, и мамилло-тектальный путь, оканчивающийся в межножковом ядре покрышки ножек мозга, откуда импульсы проводятся в другие эфферентные ядра центральной нервной системы. Из переднего ядра таламуса импульсы направляются в кору лимбической области. Кроме того, из первичной обонятельной коры нервные волокна доходят до медиовентрального ядра таламуса, где имеются также входы от вкусовой системы. Аксоны нейронов этого ядра идут к фронтальной (лобной) области коры, которую рассматривают как высший интегративный центр обонятельной системы. Гипоталамус, гиппокамп, миндалевидное тело и лимбическая область коры взаимосвязаны, они входят в состав лимбической системы и принимают участие в формировании эмоциональных реакций, а также в регулировании деятельности внутренних органов. Связь обонятельных путей с этими структурами объясняет участие обоняния в питании, эмоциональном статусе и т.д.

Развитие органа обоняния в пренатальный период онтогенеза. На втором месяце внутриутробного развития на поверхности головы зародыша образуются эктодермальные выросты, которые затем впячиваются. Их утолщенный эпителий становится дном обонятельной ямки. Сначала они довольно далеко отстоят друг от друга, находясь почти по сторонам лицевой области зародыша. По краям обонятельных ямок появляются возвышения, которые превращаются в медиальные и латеральные носовые отростки. Одновременно с ростом верхнечелюстных выступов происходит формирование лицевых структур глаза и носовые ямки смещаются из исходного латерального положения к средней линии. К концу второго месяца внутриутробного развития завершается образование верхней челюсти. На медиальных краях закладок верхнечелюстных костей появляются небные выросты, которые растут по направлению к средней линии и разделяют ротовую полость на собственно ротовую и носовые камеры. Медиальные носовые отростки срастаются друг с другом, образуя носовую перегородку. Таким образом, одновременно с отделением ротовой полости от носовой, происходит разделение последней на правую и левую половины. В крыше каждой носовой области дифференцируется обонятельная область. Обонятельные рецепторные клетки – биполярные нейроны – дифференцируются в самом эпителии среди длинных столбчатых клеток, называемых опорными клетками. Отростки рецепторных клеток, обращенные к поверхности эпителия, образуют расширения – булавы, увенчанные пучком видоизмененных ресничек, которые несут на своей поверхности рецепторы химических веществ. Противоположные отростки этих клеток удлиняются и устанавливают связь с нейронами в обонятельной луковице, которые передают нервные импульсы в соответствующие центры головного мозга.

Вкусовая сенсорная система - Вкусовая и обонятельная сенсорные системы позволяют человеку оценивать химический состав пищи и окружающего воздуха. По этой причине их объединяют под названием хемосенсорные системы. Сюда же относятся внутренностные хеморецепторы (каротидного синуса, пищеварительного тракта и другие). Химическая рецепция – одна из наиболее филогенетически древних форм связи организма со средой.

Рецепторный отдел вкусовой сенсорной системы расположен в ротовой полости и представлен вкусовыми рецепторными клетками. Они собраны во вкусовые почки, которые находятся главным образом в сосочках на дорсальной поверхности языка – грибовидных, листовидных и желобовидных. Одиночные вкусовые почки рассеяны в слизистой оболочке мягкого неба, миндалин, задней стенки глотки и надгортанника. У детей область их распространения шире, чем у взрослых; к старости их количество уменьшается.

Наиболее типичное строение у человека имеют вкусовые почки желобовидных сосочков. Каждая почка представляет собой овальное образование, занимающее всю толщину эпителия и открывающееся на его поверхность вкусовой порой. Почка имеет около 70 мкм в высоту, 40 мкм в диаметре и образована 40–60 удлиненными клетками, располагающимися наподобие долек в апельсине. Среди клеток вкусовых почек различают рецепторные, опорные и базальные. Первые два вида клеток занимают всю длину почки от ее базальной части до вкусовой поры. Относительно рецепторной функции этих клеток до сих пор идут споры. Предполагается, что опорные клетки также могут участвовать в рецепторном процессе. Вкусовые рецепторные клетки являются вторичночувствующими. В их апикальную мембрану, обращенную к вкусовой поре, встроены рецепторные молекулы, с которыми связываются различные химические вещества. В результате мембрана клетки переходит в возбужденное состояние. Через синаптические контакты в базолатеральной части клетки возбуждение передается на нервное волокно, а далее в головной мозг. Человек различает четыре основных вкуса (сладкий, соленый, горький, кислый) и несколько дополнительных (металлический, щелочной и т.д.). Рецепция вкусовых веществ становится возможной тогда, когда эти вещества попадают на поверхность языка, растворяются в слюне, проходят через вкусовую пору и достигают апикальной мембраны рецепторных клеток. Срок жизни рецепторных и опорных клеток невелик – около 10 дней. Их обновление происходит за счет митотического деления клеток в базальной части почки.

Проводниковый и центральный отделы вкусовой сенсорной системы. Вкусовые афферентные волокна от передних двух третей языка, от вкусовых почек грибовидных сосочков передней части языка и нескольких листовидных сосочков, проходят в составе лицевого нерва (барабанная струн) (ветвь VII пары), а от задней трети, задних листовидных и желобовидных – в составе языкоглоточного нерва (IX пара). Вкусовые почки задней стенки ротовой полости и глотки иннервируются блуждающим нервом (X пара). Эти волокна являются периферическими отростками нейронов, лежащих в ганглиях этих нервов: VII пара – в коленчатом ганглии, IX пара – в каменистом ганглии. Волокна всех нервов, по которым передается вкусовая чувствительность, оканчиваются в ядре одиночного пути. Отсюда восходящие волокна следуют к нейронам дорсальной части моста (парабрахиальное ядро) и к вентральным ядрам таламуса. От таламуса часть импульсов идет в новую кору – в нижнюю часть постцентральной извилины (поле 43).Предполагают, что с помощью этой проекции происходит различение вкуса. Другая часть волокон от таламуса направляется в структуры лимбической системы (парагиппокампову извилину, гиппокамп, миндалину и гипоталамус). Эти структуры обеспечивают мотивационную окраску вкусовых ощущений, участие в ней процессов памяти, которые лежат в основе приобретаемых с возрастом вкусовых предпочтений. В слизистой оболочке передней части языка оканчиваются также волокна тройничного нерва (V пара). Они попадают сюда в составе язычного нерва. По этим волокнам передается тактильная, температурная, болевая и другая чувствительность с поверхности языка, которая дополняет информацию о свойствах стимула в ротовой полости.

Развитие органа вкуса в пренатальный период онтогенеза. У 4-недельного зародыша человека лицевая область еще только начинает формироваться. Ротовая полость в этот срок представлена эктодермальным впячиванием, примыкающим к передней кишке, но не соединенным с нею. Тонкая пластинка, состоящая из экто- и энтодермы, позднее прорывается и ротовая полость соединяется с другими отделами пищеварительного тракта. По бокам ротовой полости виды закладки верхней и нижней челюстей, которые разрастаются к средней линии рта, образуя челюсти. Увеличение относительных размеров средней области лица происходит в течение всего внутриутробного периода и продолжается после рождения. Язык в начале своего формирования представляет собой полый вырост слизистой оболочки заднебоковых частей ротовой полости, заполняющийся растущими мышцами. Большая часть слизистой оболочки языка имеет эктодермальное происхождение, однако, в районе корня языка она развивается из энтодермы. Мышцы и соединительная ткань являются производными мезодермального листка. На поверхности языка формируются выросты – вкусовые и тактильные сосочки. Во вкусовых сосочках развиваются вкусовые почки, содержащие рецепторные клетки. У человека они впервые появляются на 7 неделе эмбриогенеза в результате взаимодействия между волокнами чувствительных черепно-мозговых нервов (VII и IX) и покровного эпителия языка. Имеются данные о том, что плод способен ощущать вкус. Предполагается, что эта функция может использоваться плодом для контроля окружающей его амниотической жидкости.

Соматосенсорная система - Тело человека покрывает кожный покров. Кожа состоит из поверхностного эпителиального слоя и глубоких слоев (дермы), образованных плотной неоформленной соединительной тканью и подкожной жировой клетчаткой. Кроме того, имеются производные кожи – волосы, ногти, сальные и потовые железы. Подробно строение кожи описано в 5 главе. Кроме покровной (защитной) кожа выполняет еще целый ряд функций. Она участвует в терморегуляции и выделении, а также несет большое количество рецепторных образований. Эти рецепторы воспринимают информацию о тактильных, болевых, температурных и других раздражениях, приложенных к различным участкам кожи. Другими словами, поверхность нашего тела (сомы) обладает чувствительностью, которая получила название соматической. Для проведения этой импульсации существует несколько проводящих путей, по которым информация передается в различные отделы ЦНС, в том числе в кору больших полушарий. Для каждого вида чувствительности существуют свои проекции, соматотопическая организация которых позволяет определить, к какому участку нашего тела приложено раздражение, какова его сила и модальность (прикосновение, давление, вибрация, температурное или болевое воздействие и т.д.). Для восприятия этих раздражителей существует несколько видов рецепторных образований. Все они относятся к первичночувствующим, т.е. представляют собой концевые разветвления чувствительных нервных волокон. В зависимости от наличия или отсутствия вокруг них дополнительных структур в виде соединительнотканных и других капсул они могут быть соответственно инкапсулированными или неинкапсулированными (свободными).

Свободные нервные окончания. Эти окончания нервных волокон представляют собой их терминальные разветвления, лишенные миелиновой оболочки. Они располагаются в дерме и в глубоких слоях эпидермиса, поднимаясь до зернистого слоя (рис. 3.76). Такие окончания воспринимают механические стимулы, а также отвечают на нагревание, охлаждение и болевые (ноцицептивные) воздействия. Окончания образованы тонкими миелинизированными или безмиелиновыми волокнами. Так, например, при ожоге первые волокна обеспечивают быструю реакцию (отдергивание руки), а вторые – довольно продолжительное чувство жжения. Тонкие миелиновые волокна чувствительны к охлаждению, в то время как безмиелиновые – к нагреванию. В то же время, очень сильное охлаждение или нагревание может вызвать боль и последующий зуд.

Кроме того, в волосистой коже стержни и луковицы волос окружены окончаниями 5–10 чувствительных волокон (рис. 3.76). Эти волокна утрачивают миелиновую оболочку и внедряются в базальную пластинку волосяного стержня. Они реагируют на малейшее отклонение волоса.

Инкапсулированные нервные окончания представляют собой специализированные образования для восприятия определенного вида стимула. Они являются окончаниями более толстых миелинизированных волокон, чем те, которые образуют свободные нервные окончания. Это связано с большей скоростью передачи сигнала в центральные структуры. Тельца Фатера-Пачини (тельца Пачини) – одни из самых крупных рецепторных структур подобного рода (рис. 3.77, А ). Они расположены в глубоких слоях дермы, а также в соединительнотканных оболочках мышц, надкостнице, брыжейках и т.д. На одном полюсе в тельце проникает миелинизированное нервное волокно, которое сразу же теряет миелиновую оболочку. Волокно проходит через тельце во внутренней колбе и на конце расширяется, образуя выросты неправильной формы. Над внутренней находится наружная колба, образованная многочисленными концентрически расположенными пластинами – производными шванновских клеток, между которыми находятся коллагеновые волокна и тканевая жидкость. Снаружи тельце покрыто соединительнотканной капсулой, которая непрерывно переходит в эндоневрий афферентного волокна. Чем глубже располагается тельце Пачини, тем большее количество слоев во внутренней и наружной колбах оно содержит. Эти окончания чувствительны к прикосновению, давлению и быстрой вибрации, что имеет значение для восприятия фактуры предмета. При нанесении раздражения, например в виде давления, слои капсулы смещаются, и в афферентном волокне возникает возбуждение. Диски Меркеля лежат более поверхностно под эпителием, возле его нижней границы. Они чувствительны к статическим тактильным стимулам (прикосновение, давление). Тельца Мейснера лежат в основании сосочков дермы и чувствительны к легким прикосновениям и вибрации. Они особенно многочисленны в коже ладоней и подошв, губ, век, сосках молочных желез. Тельца Мейснера представляют собой овальные образования длиной около 100 мкм, расположенные перпендикулярно поверхности эпителия. Тельце образуют уплощенные видоизмененные шванновские клетки, наслаивающиеся друг на друга, лежащие в большинстве своем поперечно. Миелинизированное афферентное волокно подходит к тельцу Мейснера, теряет миелин и многократно ветвится. Таким образом, в тельце входит до 9 его веточек. Они располагаются по спирали в пространствах между клетками. Снаружи тельце покрыто соединительнотканной капсулой, за его пределами переходящей в эндоневрий. С помощью пучков коллагеновых волокон капсула тельца прикрепляется к нижней границе эпителия. Тельца Руффини лежат в глубоких слоях дермы, они особенно многочисленны на подошвенной поверхности стопы и представляют собой овальные тельца размером 1×0,1 мм. Толстое миелинизированное афферентное волокно подходит к тельцу, теряет оболочку и ветвится. Многочисленные терминальные волоконца переплетаются с коллагеновыми волокнами, которые также образуют сердцевину тельца. При смещении коллагеновых волокон происходит возбуждение афферентов. Тонкая капсула тельца переходит в эндоневрий. Концевые колбы Краузе расположены в конъюнктиве глаза, языке, наружных половых органах. Тельца окружает тонкостенная капсула. Афферентное волокно перед вхождением в капсулу утрачивает миелин и ветвится. Вероятно, эти окончания выполняют механорецепторную функцию. Кроме того, что нервная система получает информацию о раздражителях, действующих на кожный покров, в нее поступают импульсы от опорно-двигательного аппарата, сигнализирующие о положении тела в пространстве. Раньше эту систему чувствительности называли двигательным анализатором, но в настоящее время общепринятой стала другая терминология.

Как видно из таблицы, эти три термина в некоторой степени перекрывают друг друга. Проприорецепция объединяет сенсорные сигналы от скелета и мышц и, следовательно, включает в себя мышечное чувство. Кинестезия – это чувство положения тела и движения конечностей, а также ощущения усилий, силы и тяжести. В ее обеспечении участвуют все рецепторы опорно-двигательного аппарата и кожи. Рецепторные структуры, обеспечивающие эти виды чувствительности, имеют достаточно сложное строение.

Мышечные рецепторы – мышечные веретена – служат для определения степени растяжения мышцы. Их особенно много в мышцах, управляющих точными движениями. Эти рецепторы представляют собой образования веретеновидной формы, заключенные в тонкую растяжимую соединительнотканную капсулу. Веретена располагаются в мышцах продольно и растягиваются при растяжении мышцы. Каждое веретено образовано несколькими волокнами (от 2 до 12), названными интрафузальными (от лат. fusus – веретено) (рис. 3.78). Эти волокна омывает тканевая жидкость. Интрафузальные волокна бывают двух типов. В центральной части большинства волокон располагается цепочка из одного ряда клеточных ядер. Второй тип волокон в центре несет ядерное скопление (волокна с ядерной сумкой); эти волокна длиннее и толще, чем первые. Периферические концы волокон обоих типов способны растягиваться. Интрафузальные волокна иннервируются афферентными миелинизированными нервными волокнами. При этом толстое нервное волокно, имеющее большую скорость проведения импульсов, подходит к центральной части интрафузального волокна и по спирали обвивает ядерную сумку или область, содержащую цепочку ядер. Такое окончание называют первичным. По сторонам от первичных окончаний более тонкие афферентные волокна образуют вторичные окончания, форма которых может быть похожа на гроздь. Первичное окончание реагирует на степень и скорость растяжения мышцы, а вторичное – только на степень растяжения и изменение положения мышцы. При растяжении мышцы информация от нервных окончаний поступает в спинной мозг, где часть ее переключается на мотонейроны передних рогов. Их ответная рефлекторная импульсация приводит к сокращению мышцы. Другая часть импульсов переключается на вставочные нейроны и поступает в другие отделы нервной системы (см. ниже). Мышечные веретена имеют также и эфферентную иннервацию, которая контролирует степень их растяжения. Эфферентные волокна подходят к мышечным веретенам от мотонейронов спинного мозга, но не от тех, что иннервируют саму мышцу, волокна которой называют экстрафузальными. Однако в некоторых случаях мышечные веретена получают моторную иннервацию по коллатералям от аксонов, идущим к мышцам. Это наблюдается, например, в мышцах глазного яблока.

Кроме рецепторных окончаний, лежащих в самих мышцах и реагирующих на степень их растяжения, существуют рецепторы в местах соединения мышц с сухожилиями. Они носят название сухожильных органов (рецепторов) Гольджи (рис. 3.79). Они покрыты капсулой и иннервируются толстыми миелиновыми волокнами. Оболочка волокон теряется в месте прохождения через капсулу, и волокно образует терминальные ветвления между пучками коллагеновых волокон сухожилия. Эти окончания возбуждаются при сдавливании их волокнами сухожилия при сокращении мышцы, тогда как мышечные веретена неактивны, и наоборот, при растяжении мышцы активность веретен возрастает, а сухожильных рецепторов снижается.

Большое количество рецепторных окончаний расположено в суставах (рис. 3.79). В суставных связках лежат рецепторы, схожие с сухожильными, в соединительнотканных суставных сумках в большом количестве встречаются свободные нервные окончания, а также структуры, аналогичные тельцам Пачини и Руфини. Они чувствительны к растяжению и сжатию, возникающим при движении, и таким образом сигнализируют о положении тела в пространстве и движении отдельных его частей (кинестезия). Свободные нервные окончания могут, кроме того, воспринимать боль.

Проводниковый и центральный отделы соматосенсорной системы. Нервные импульсы от рецепторов кожи и опорно-двигательного аппарата, кроме головы, по спинно-мозговым нервам достигают спинальных ганглиев, а затем через задние корешки поступают в спинной мозг. Афферентные волокна каждого заднего корешка проводят импульсы от определенной области тела – дерматома (см. Атл.). Поступившая в спинной мозг информация используется в двух назначениях: она участвует в местных рефлексах, дуги которых замыкаются на уровне спинного мозга, а также передается в вышележащие отделы ЦНС по восходящим путям. При этом в восходящих трактах прослеживается соматотопическая организация: аксоны, присоединившиеся на более высоком уровне, располагаются со стороны серого вещества. Соответственно аксоны, идущие от нижней части тела, лежат более поверхностно.

Как говорилось выше, серое вещество спинного мозга можно представить в виде пластин. Тонкие безмиелиновые волокна, подходящие к спинному мозгу от болевых и механорецепторов, оканчиваются в поверхностных пластинах, в основном в желатинозной субстанции. Тонкие миелиновые волокна доходят в основном только до краевой зоны (рис. 3.80). Толстые миелиновые волокна огибают задний рог, отдают коллатерали к нейронам III–IV слоев и входят в задний канатик белого вещества. Как было установлено, большинство нейронов заднего рога получают афферентацию только одного типа, однако существуют нейроны, на которых сходятся импульсы от различных рецепторов. На этом может быть основано взаимодействие различных рецепторных систем. Аксоны нейронов заднего рога могут уходить в белое вещество – в восходящие тракты, или достигать мотонейронов передних рогов и участвовать в осуществлении ряда спинальных рефлексов. Так, импульсы от кожных рецепторов запускают сгибательный рефлекс. Он появляется при отдергивании конечности от болевого раздражителя (при ожоге и т.п.). Импульсы от рецепторов соматосенсорной системы проводятся по тонкому и клиновидному пучкам, а также по спинно-таламическим и спинно-мозжечковым путям и тройничной петле. Тонкий пучок несет импульсы от тела ниже V грудного сегмента, а клиновидный пучок – от верхней части туловища и рук. Эти пути образованы аксонами чувствительных нейронов, тела которых лежат в спинальных ганглиях, а дендриты образуют рецепторные окончания в коже, мышцах и сухожилиях. Пройдя весь спинной мозг и заднюю часть продолговатого, волокна тонкого и клиновидного пучков оканчиваются на нейронах тонкого и клиновидного ядер. Аксоны нейронов этих ядер идут по двум направлениям. Одни – под названием наружных дугообразных волокон – переходят на противоположную сторону, где в составе нижних ножек мозжечка оканчиваются на клетках коры червя (см. Атл.). Нейриты последних связывают кору червя с ядрами мозжечка. Аксоны нейронов этих ядер, в составе нижних ножек мозжечка, направляются к преддверным ядрам моста. Другая, большая часть волокон от нейронов тонкого и клиновидного ядер спереди от центрального канала продолговатого мозга, совершает перекрест и образует медиальную петлю или лемниск. Поэтому оба этих пути называют лемнисковой системой. Медиальная петля идет через продолговатый мозг, покрышки моста и среднего мозга и заканчивается в латеральных и вентральных ядрах таламуса. По пути через ствол мозга волокна медиальной петли отдают коллатерали к ретикулярной формации. Волокна нейронов таламуса проходят в составе таламической лучистости к коре центральных областей больших полушарий. Как ядра продолговатого мозга, так и таламические и корковые проекции тонкого и клиновидного путей имеют соматотопическую организацию. По этим путям (особенно по клиновидному пучку) передается тонкая чувствительность от верхних конечностей, благодаря чему становятся возможными тонкие и точные движения пальцев руки. Этому способствует также наличие небольшого числа переключений с нейрона на нейрон – не происходит "растекания" возбуждения по структурам головного и спинного мозга.

Спинно-таламический путь проводит возбуждение от рецепторов, раздражение которых вызывает болевые и температурные ощущения (см. Атл.). Здесь также имеются волокна от суставных и тактильных рецепторов. Тела чувствительных нейронов этого пути также залегают в спинальных ганглиях. Центральные отростки этих нейронов входят в спинной мозг в составе задних корешков, где и оканчиваются на телах вставочных нейронов задних рогов на уровне IV– VI пластин. Аксоны нейронов задних рогов частично переходят на противоположную сторону, остальные остаются на своей стороне и в глубине бокового канатика образуют спинно-таламический путь. Последний проходит спинной мозг, покрышки продолговатого мозга, моста и ножек мозга и оканчивается на клетках вентрального ядра таламуса. По пути через ствол мозга от волокон этого тракта отходят коллатерали к ретикулярной формации. От таламуса волокна идут в составе таламической лучистости к коре, где оканчиваются, главным образом в постцентралъной области. Спинно-мозжечковые задний и передний пути проводят возбуждение от проприорецепторов двигательного аппарата (см. Атл.). Чувствительные нейроны этих путей расположены в спинальных ганглиях, а вставочные – в задних рогах спинного мозга. Нейриты вставочных нейронов, входящие в состав заднего спинно-мозжечкового пути, остаются на той же стороне спинного мозга в боковом канатике, а образующие передний путь переходят на противоположную сторону, где располагаются тоже в боковом канатике. Оба пути входят в мозжечок: задний – по его нижним ножкам, а передний – по верхним. Оканчиваются они на клетках коры червя. Отсюда импульсы идут по тем же путям, что и проходящие по наружным дугообразным волокнам из продолговатого мозга. Благодаря спинно-мозжечковым путям осуществляется интеграция информации от мышечных и суставных рецепторов конечностей и мозжечковых механизмов, необходимых для координации движений, поддержания мышечного тонуса и позы. Это особенно важно для работы нижних конечностей в положении стоя и при движении

Тройничная петля передает импульсы от механо-, термо- и болевых рецепторов головы (см. Атл.) Чувствительными нейронами служат клетки тройничного узла. Периферические волокна этих клеток проходят в составе трех ветвей тройничного нерва, иннервирующих кожу лица (рис. 3.28). Центральные волокна чувствительных нейронов выходят из узла в составе чувствительного корешка тройничного нерва и проникают в мост в том месте, где он переходит в средние ножки мозжечка. В мосту эти волокна делятся Т-образно на восходящие и длинные нисходящие ветви (спинальный путь), которые оканчиваются на нейронах, образующих в покрышке моста основное сенсорное ядро тройничного нерва, а в продолговатом и спинном мозге – его спинальное ядро (см Атл.). Центральные волокна нейронов этих ядер совершают перекрест в верхней части моста и в качестве тройничной петли проходят по покрышке среднего мозга до таламуса, где оканчиваются самостоятельно или вместе с волокнами медиальной петли над клетками его вентрального ядра. Отростки нейронов этого ядра направляются в составе таламической лучистости к коре нижней части постцентралъной области, где главным образом и локализуется чувствительность, приходящая от структур головы

Соматосенсорные проекции в коре больших полушарий расположены в постцентральной извилине. Сюда подходят волокна от таламуса, приносящие импульсы от всех рецепторов кожи и опорно-двигательного аппарата. Здесь, также как и в таламусе, хорошо выражена соматотопическая организация проекций (рис. 3.81). Кроме первичной проекционной зоны, получающей афферентацию только от таламуса, существует и вторичная зона, на нейронах которой наряду с таламическими оканчиваются волокна от первичной зоны. В этой зоне происходит переработка сенсорных сигналов, отсюда они направляются в другие, в том числе и моторные области коры и подкорковые структуры.