Ротовая жидкость как биологическая среда полости рта. Состав слюны. Роль слюны в «созревании» эмали после прорезывания зубов и в патогенезе кариеса. Факторы влияющие на гомеостаз полости рта. Поддержание кислотно-основного равновесия в полости рта

Важным и наименее постоянным параметром гомеостаза является кислотно-щелочное равновесие в полости рта. Наиболее информативным показателем кислотно-основного равновесия является водородный показатель (рН). Этот показатель варьирует в зависимости от участка полости: кислое значение рН в межзубных промежутках и нейтральное или слабощелочное — на кончике языка. Интегральным показателем кислотного гомеостаза в полости рта является рН слюны. В норме рН слюны находится в пределах 6,5-7,5.

Изменения кислотно-щелочного равновесия в полости рта могут быть двух видов: ацидоз или алкалоз. При любом направлении сдвигов гомео­стаза следует различать изменения физиологические и патологические. Фи­зиологические изменения кратковременны, не приводят к нарушению нор­мальных физиологических процессов и не оказывают влияния на структуру и функции тканей полости рта. Патологические изменения значительно вы­ходят за границы нормы и приводят к нарушениям структуры и функций тех или иных тканей полости рта: кариесу, десквамации эпителия слизис­той, отложению зубного камня, пародонтиту.

Множество эндо- и экзогенных факторов влияет на кислотно-щелочное равновесие в полости рта: общее состояние организма человека, выраженность условных и безусловных рефлексов, мышечная (жевательная) активность, характер дыхания, речи, пища, ротовая микрофлора, гигиени­ческие средства, протезы, пломбы и другое. Наиболее выражено в физиологических условиях влияют жизнедеятельность микрофлоры, состав пищи, состав и скорость секреции слюны.

Налет

Кислотно-щелочное равновесие в полости рта зависит от наличия налета.

Микробный налет образуется, в основном, на поверхностях зубов, ис­кусственных протезов и на спинке языка. Зубной налет (зубная бляшка) — скопление микроорганизмов, обитающих в полости рта, на поверхности зубов с включением бесструктурного вещества органической природы: бел­ков, липидов, углеводов. Среди углеводов важное значение имеет декстран — гомоолигосахарид, состоящий из остатков глюкозы. Декстран обладает способностью адгезировать (сорбировать) бактерии в зубную бляшку. Зре­лый зубной налет в 1г содержит около 2,5 10 11 бактерий.

Основным ис­точником энергопродукции бактерий зубного налета являются процессы анаэробного распада углеводов: молочнокислое, маслянокислое, пропионовокислое брожение. Лактат и другие органические кислоты, продуци­руемое микробным налетом при утилизации углеводов пищи, и являются главными »виновниками» ацидозных сдвигов не только в области зубного налета, но и в ротовой жидкости. В налете идет процесс утилизации мочевины, поступающей в ротовую по­лость главным образом со слюной. Уреазы бактерий расщепляют мочевину на аммиак и углекислый газ. Аммиак, связывая протоны, смещает кислот­но-щелочное равновесие в основную сторону. Однако этого недостаточно, чтобы противостоять мощному «метаболическому взрыву», вызванному углеводами.

Пища

Кислотно-щелочное равновесие в полости рта зависит от пищи. Пища является дестабилизатором кислотно-основного равновесия. Влияние пищи следует рассматривать в нескольких аспектах.

Во-первых, пища содержит кислоты и основания. Так, фрукты, соки содержат значительное количество органических кислот, которые вызы­вают резкое снижение рН ротовой жидкости (до 4-3 единиц). Если такой пищевой продукт недолго задерживается в полости рта, это изменение кратковременно. Более длительный контакт может вызвать, например, эро­зию твердых тканей зубов: эмали и дентина. Некоторые пищевые продукты содержат ионы аммония, мочевину (сыр, орехи, ментол) и являются алкогенными. Обычно изменения реакции смешанной слюны в щелочную сто­рону незначительны и не превышают рН 8.

Во-вторых, содержащиеся в пище углеводы метаболизируются мик­рофлорой зубного налета, с образованием большого количества органиче­ских кислот, преимущественно лактата. Наиболее ацидогенными являются моно- и дисахариды.

В порядке убывания ацидогенности их можно распо­ложить следующим образом: сахароза, инвертный сахар, глюкоза, фрукто­за, мальтоза, галактоза, лактоза. Особая ацидогенность сахарозы обуслов­лена приспособляемостью микроорганизмов к избытку сахарозы и объяс­няется ее очень быстрой ферментацией в зубном налете, выраженным стимулирующим действием на рост зубного налета, высокой способностью стимулировать выработку в зубном налете полисахаридов, в частности, полисахаридов с адгезивными свойствами.

В-третьих, прием пищи, ее пережевывание стимулируют слюноотделе­ние и, тем самым, способствуют нивелированию возникающих сдвигов рН.

Слюна

Кислотно-щелочное равновесие в полости рта зависит от слюны. Слюна является главным фактором нивелирования сдвигов рН в ротовой полости в физиологических условиях. Ее влияние на этот показатель обусловлено:

  • механическим очищением от остатков пищи; 1
  • противомикробным действием лизоцима, цианидных анионов, фа­гоцитов, иммуноглобулинов и других компонентов;
  • работой буферных систем: бикарбонатной (обеспечивает около 80% буферной емкости слюны), белковой и фосфатной.

Реализация стабилизирующих рН свойств слюны существенно за­висит от скорости ее секреции, реологических свойств (вязкости). В целом, чем выше скорость слюноотделения и меньше вязкость, тем сильнее спо­ собность слюны противостоять изменениям рН в полости рта. Мышечные сокращения, связанные с жеванием, глотанием и речью способствуют опо­рожнению слюнных желез и перемещениям слюны в полости рта, и поэтому могут рассматриваться как фактор стабилизации кислотно-щелочного рав­новесия.

Методы искусственного воздействия на кислотно-щелочное равновесие в полости рта

Механизмы саморегуляции кислотно-щелочного равновесия не всегда работают достаточно эффективно. Поэтому используются различные пути воздействия на основные элементы регуляции.

Наиболее действенным путем является воздействие на ротовую мик­рофлору и ее метаболическую активность. Это воздействие может осущест­вляться несколькими способами:

  • механическое удаление с помощью средств гигиены (флоссинг и
    чистка языка, чистка зубов);
  • применение антисептиков, фторидов;
  • ограничение поступления в ротовую полость легкометаболизируемых углеводов

Другим путем воздействия на кислотно-основное равновесие в поло­сти рта является влияние на ротовую жидкость, например, увеличение ско­рости слюноотделения. Повышенной саливации способствуют более жест­кие пищевые продукты (за счет мышечной активности), жевательные ре­зинки, добавление в пищу небольшого количества кислот, например, ли­монной кислоты.

Повышение скорости слюноотделения ведет к ускорению механического очищения зубов, полости рта от остатков углеводов пищи, спущенного эпителия, происходит усиление поступления в полость рта но­вых молекул буферных систем, противомикробных компонентов слюны.

Оценка действия факторов, влияющих на кислотно-щелочное равновесие в полости рта

Очевидно, что рН ротовой жидкости — показатель изменяемый в усло­виях существования организма. Способ интегральной оценки факторов, влияющих на кислот­но-щелочное равновесие в полости рта, был предложен, в 1938 году амери­канским ученым Стефаном. Информацию о о длительности, выраженности ацидозных сдвигов после приема пищи и скорости их коррекции позволяет получить кривая Стефана .

Кривая Стефана

Кривая Стефана — это график временных изме­нений рН ротовой жидкости (микробного налета), после употребления пищи. В то же время именно такая информация дает возможность прогнозировать риск неблагоприятных по­следствий нарушений кислотно-основного равновесия, и, в частности, та­ких как деминерализации эмали. Рассмотрим кривую Стефана в ротовой жидкости после употребления ку­сочка сахара. Кривая получена с помощью многократных измерений рН ротовой жидкости: до употребления сахара, через 15, 30, 45 и 60 минут пос­ле употребления.

Видно, что примерно в течение 15 минут после приема са­хара рН снижается до минимальных значений (катакрота). Затем происхо­дит подъем рН с восстановлением исходного уровня по истечению часа с момента приема сахара (анакрота). Падение рН обусловлено продукцией кислот микрофлорой, восстановление исходного значения рН обусловлено действием кислотоснижающих факторов полости рта. Оценку возму­щающих кислотно-основное равновесие факторов и факторов им противонаправленных проводят с использованием эмпирических и расчетных показателей.

Клиническое значение кривой Стефана состоит в том, что позволяет оценить кариесогенную ситуацию в полости рта. При снижении рН ниже 6,2 слюна представляет собой деминерализующую жидкость, при рН выше 6,2 – реминерализующую. Поэтому значение рН слюны равное 6,2 называют критическим. С помощью кривой Стефана возможно исследование кариесогенности (по кислотопродукции) различных пищевых продуктов, эффективности действия противомикробных средств (антисептиков, гигиенических средств).

Ряд исследований позволяет оценить отдельные факторы, влияющие на кислотно-щелочное равновесие в полости рта. К такого рода исследова­ниям относятся анализ количества тех или иных видов кислотопродуцирующих бактерий полости рта, а также определение буферной емкости слюны. Буферная емкость слюны может быть определена методикой так называемой «погруженной палочки». Методика состоит в погружении па­лочки, покрытой химическими индикаторами, в смешанную слюну пациен­та. Образующаяся цветная окраска и является показателем буферной ем­кости слюны.

Буферная емкость слюны

Буферная емкость слюны. Это способность нейтрализовать кислоты и щелочи. Установлено, что прием в течение длительного времени углеводистой пищи снижает, а прием высокобелковой — повышает буферную емкость слюны. Высокая буферная емкость слюны — фактор, повышающий устойчивость зубов к кариесу.

Кислотно-основное состояние в полости рта является важным компонентом местного гомеостаза. Оно обеспечивает многие биохимические процессы, как например, ре- и деминерализацию эмали зубов, налето- и камнеобразование, жизнедеятельность ротовой микрофлоры и т.д. С состоянием КОС в полости рта тесно связаны физические и биохимические свойства слюны, ее минерализующая функция, активность ферментов слюны, транспорт воды и ионов, миграция клеточных элементов, выраженность клеточных и гуморальных факторов защиты, градиент и скорость ионообменных процессов.

Поэтому нарушения КОС приводят к сдвигам в гомеостатической регуляции органов и тканей зубочелюстной системы. Все изменения КОС в полости рта идут в двух противоположных направлениях: в сторону ацидоза или в сторону алкалоза. Факторов, дестабилизирующих КОС в полости рта, много. К ним относятся пища, вода, состав воздуха, метеорологические и профессиональные факторы, курение и иные вредные привычки, средства гигиены, лекарственные препараты и лечебные воздействия, наконец, пломбы и протезы зубов. С прогрессом цивилизации число таких факторов не уменьшается, а увеличивается. Полость рта - это своеобразная морфологически и функционально ограниченная экологически открытая биосистема.

В регуляции КОС полости рта участвуют жидкости, ткани, органы и анатомические образования. На рис. 10.4 приведена схема основных взаимодействий в системе регуляции КОС, из которой видно, что основной жидкостью в полости рта, реализующей ионообменные реакции между разными зонами, тканями и органами, является ротовая жидкость, или смешанная слюна. К ней прибавляется десневая жидкость, выделяющаяся из десневого желобка.

Основные механизмы регуляции кислотно» основного состояния в полости рта.

Слюна является основной жидкостью полости рта, кроме того, сюда постоянно выделяется десневая и тканевая жидкость, диффундирующие через слизистую оболочку.

Секреция слюны в железах проходит два этапа. Сначала в ацинусах слюнных желез образуется первичный изотонический секрет, состав и свойства которого определяются пассивным транспортом ионов и действием электрофизиологических механизмов. Затем в протоках желез осуществляется контроль и коррекция первичного секрета в зависимости от его состава и физиологической необходимости. При этом затрагиваются кислотно-основные свойства секретируемой слюны (рис. 10.5).

Рис. 10.4. Схема основных взаимодействий в системе регуляции кислотно-основного состояния полости рта


Секрет слюнной железы pH 7,2

Рис. 10.5. Система ионного транспорта в канальцах слюнных желез, влияющая на кислотно-основной состав слюны. ИКП - интерстициальные клетки протока

Интерстициальные клетки протока участвуют в формировании гематосаливарного барьера, впервые описанного Ю.А. Петровичем, обладающего высокой селективностью к ионам. Избыток ионов водорода вместе с ионами натрия из протока железы путем пассивной реабсорбции поступают в кровь, что ведет к снижению кислотности слюны. А ионы НСОз из сыворотки крови и тканевой жидкости избирательно поступают в слюну путем активного транспорта, повышая ее щелочность. За счет такого механизма регуляции pH секретируемой слюны может заметно (на десятые доли pH) отличаться от всегда стабильного значения pH крови 7,4. Смешанная слюна является главным регулятором КОС в полости рта. Реализация функций слюны существенно зависит от скорости ее секреции, количества в полости рта и реологических свойств (вязкости, поверхностного натяжения).

Взаимодействие между микробным зубным налетом и ротовой жидкостью.

Взаимодействия, происходящие в системе «зубной налет – ротовая жидкость», являются наиболее частыми, быстрыми и выраженными. Микробный зубной налет является сильным фактором дестабилизации КОС в ротовой жидкости. Изменение КОС в ротовой жидкости может происходить как в сторону ацидоза, так и алкалоза (рис. 10.6). Ацидоз развивается в зубном налете чрезвычайно быстро вследствие преобладания ацидогенной микрофлоры, в основном стрептококков, ферментирующих простые углеводы. Поэтому с первых минут употребления сладкой пищи концентрация ионов водорода в зубном налете возрастает лавинообразно.

Рис. 10.6. Схема основных взаимодействий в системе «зубной налет - ротовая жидкость» при типовых нарушениях КОС

В толще зубного налета действуют те же буферные системы, что и в слюне. Однако из-за низких диффузных свойств налета их действие практически сводится к нулю. Кислоты смываются ротовой жидкостью, реакция которой (с учетом буферных свойств) изменяется в кислую сторону. Деминерализующие свойства смешанной слюны нарастают, а при pH ниже критического (6,2 - 6 , 0 ) она полностью утрачивает свои минерализующие свойства. Одновременно микрофлора из слюны забирает ионы гидрофосфата, которые использует в реакциях фосфорилирования, требующих энергетических затрат.

Длительный или часто повторяющийся ацидоз на поверхности эмали зуба приводит к ее деминерализации и развитию кариеса. Наиболее вероятен такой процесс в местах постоянного скопления ацидогенной микрофлоры (фиссуры и ямки, пришеечная зона и контактные поверхности зубов). Эмаль зубов в этом случае начинает выполнять роль своеобразной буферной системы, принимающей участие в связывании ионов водорода и, следовательно, в уменьшении ацидоза в полости рта. Поэтому высокую активность кариозного процесса можно рассматривать как результат длительной декомпенсации адаптационных реакций, направленных на борьбу с ацидозом в полости рта.

Алкалоз в зубном налете и ротовой жидкости развивается не так быстро, как ацидоз, но тем не менее изменения реакции в щелочную сторону могут быть весьма выражены. Главным источником оснований в зубном налете и ротовой жидкости является мочевина. Некоторые микроорганизмы зубного и язычного налета (в основном, пародонтопатогенные) утилизируют мочевину, которая является субстратом для образования аммиака с помощью фермента уреазы. Превращение накопившегося аммиака в катион аммония является причиной алкалоза. В ротовую жидкость мочевина может попадать несколькими путями; с пищей, секретом слюнных желез (нитраты и нитриты), с десневой жидкостью, с плазмой крови при кровоточивости десны и слизистой оболочки, а также из распавшихся тканей. Мочевина также может синтезироваться микрофлорой из аминокислот, содержащихся в десневой жидкости, зубном налете и смешанной слюне (L -аргинин).

Важным результатом алкалоза в ротовой жидкости и зубном налете является его минерализация, ведущая к образованию зубного камня, чему также способствует увеличение выделения десневой жидкости. Образуется он более чем у 80 % людей. Процесс камнеобразования в условиях алкалоза сопровождается повышением в ротовой жидкости концентрации электролитов (ионов Са 2+ , НРО 4 2- , Сl – , К 4 , Mg 2+ и др.), недостаточным синтезом защитных белков и нарушением их структуры. Зубной камень становится в полости рта дополнительной буферной системой, образующейся в условиях длительной декомпенсации адаптационных реакций организма, направленных на борьбу с алкалозом. Образование зубного камня уменьшает алкалоз в полости рта путем связывания ионов гидрофосфата и ионов гидроксила.

Таким образом, декомпенсированные нарушения в системе взаимодействия «зубной налет - ротовая жидкость» являются важной причиной развития наиболее распространенных заболеваний зубов и пародонта. Деминерализация эмали в случае ацидоза приводит к развитию кариеса зубов. Образование камня в случае алкалоза наряду с другими факторами (во многом также зависящими от местного алкалоза) способствует усугублению воспалительной реакции в тканях пародонта.

Помимо зубного налета, выраженное влияние на КОС в полости рта оказывает налет на языке. Его микрофлора, включаюшая большую долю анаэробных микроорганизмов, принимает участие в образовании зубного налета, а также кислот и оснований в смешанной слюне, оказывает подавляющее действие на ацидогенную микрофлору. Мышечная система челюстно-лицевой области и полости рта является немаловажным фактором регуляции КОС. Жевание, моторика губ и щек способствуют более интенсивному слюноотделению, активной экскурсии ротовой жидкости, удалению пищевых остатков. В этом плане особую роль играет язык. Он не только участвует в формировании пищевого комка и самоочищения ротовой полости. Кончик языка является механическим регулятором КОС, особенно в области оральных и окклюзионных поверхностей зубов. Являясь одной из наиболее «чистых» зон в полости рта, почти лишенной микробного налета, кончик языка распределяет во рту выделяющуюся слюну, перемещает ее и тем самым ускоряет ионообменные процессы. Мышечные сокращения, связанные с жеванием, глотанием и речью, способствуют опорожнению слюнных желез.

Методы оценки кислотно-основного состояния в полости рта.

Оценка КОС в полости рта дает стоматологу полезную информацию для ранней диагностики, прогнозирования, мониторинга лечения и профилактики основных стоматологических заболеваний. Она позволяет выбирать методы патогенетического лечения, проводить грамотную и адекватную коррекцию питания, привычек, гигиены, а при необходимости - планировать ортопедическое и ортодонтическое лечение, хирургические вмешательства.

Для оценки КОС в полости рта могут использоваться различные показатели. Точным, быстрым и доступным является потенциометрический метод, для которого используют лабораторные рН-метры со стрелочной или цифровой индикацией, снабженные чувствительным к ионам водорода измерительным электродом и вспомогательным электродом сравнения со стабильным электрическим потенциалом.

Определение pH слюны или суспензии микробного налета проводят стандартными стеклянными электродами. При этом исследуемую жидкость помещают в маленькую кювету. Для определения pH непосредственно во рту более удобны металлоксидные измерительные электроды из сурьмы или специальные оливы, в которых запаяны измерительный и сравнительный электроды. Существует радиометрический метод определения pH во рту (на расстоянии).

Величина pH ротовой жидкости у одних и тех же лиц без какой-либо стимуляции отличается постоянством. В течение суток происходят закономерные временные колебания pH слюны: утром он ниже, чем в середине дня, и имеет тенденцию к повышению вечером. Ночью pH смешанной слюны ниже, чем днем. Наряду с суточным ритмом изменений pH ротовой жидкости отмечено снижение его значений с возрастом. Снижение pH наблюдается у женщин во время беременности. В разных участках полости рта значение показателя pH различное: на слизистой оболочке твердого нёба реакция на 0,7-1,2 ед. более щелочная, чем в других областях, в области нижней губы она на 0,3 -0,8 ед. более щелочная, чем в области верхней.

В 1940 г. американский стоматолог Р. Стефан после аппликаций на зубные ряды растворов глюкозы и сахарозы наблюдал быстрое снижение pH в зубном налете с последующим более медленным возвратом к исходному уровню. Такое изменение pH налета или смешанной слюны в результате микробного гликолиза сахаров получило название кривой Стефана (рис. 10.7). В. А. Румянцев выделяет в этой кривой следующие информативные расчетные показатели: амплитуда кривой pH Стефана

угловой коэффициент катакроты

угловой коэффициент анакроты

коэффициент асимметрии

интенсивность критического снижения pH


Рис. 10.7. Кривая (кривая Стефана) изменения pH смешанной слюны после употребления сахарозы (С): pH1 - начааьнос значение pH; А - амплитуда кривой; Тк - длительность катакроты; Та - длительность анакроты; рНк - критическое значение pH; S - интенсивность критического значения pH; рНм - минимальное значение pH

Амплитуда кривой является наиболее информативным показателем, поскольку характеризует кислотопродуцирующую активность ротовой микрофлоры и эффективность механизмов регуляции КОС. Чем больше амплитуда кривой, тем больше вырабатывается в ответ на стимуляцию углеводом микрофлоры органических кислот (преимущественно лактата) и тем меньше возможностей у систем регуляции КОС ликвидировать ацидоз. Значение коэффициента катакроты возрастает с увеличением скорости микробной кислотопродукции и в большей степени, чем амплитуда, характеризует ее ацидогенную активность. Коэффициент анакроты, наоборот, говорит о способности систем регуляции КОС восстанавливать гомеостаз.

С помощью коэффициента асимметрии можно судить о степени дестабилизирующего действия на КОС углеводсодержаших продуктов. Интенсивность критического снижения pH характеризует выраженность запредельных изменений КОС, которые могут привести к развитию патологии (деминерализация твердых тканей зубов). Перечисленные показатели кривой Стефана отражают кратковременные нарушения КОС в полости рта. Дж. Никифрук (G.Nikifruk) приводит данные о том, что суточная интенсивность критического снижения pH в зубном налете в несколько раз больше у кариесвосприимчивых лиц по сравнению с кариесустойчивыми.

Использование в качестве стимулятора ацидогенной ротовой микрофлоры тестового углеводсодержаше-го продукта (одинакового по составу, концентрации и времени применения) позволило использовать кривую Стефана для оценки подавляющего действия на микрофлору различных средств. Сравнение амплитуд тестовых кривых pH в ротовой жидкости до и после применения противомикробных средств позволяет оценить степень, длительность их подавляющего действия, а также сравнивать эффективность разных концентраций, наполнителей (растворителей), длительность применения. Способ оказался полезным также в оценке эффективности средств гигиены полости рта и действия на КОС во рту пищевых продуктов.

Водородный показатель и пищевые продукты.

Кислотосодержащие пищевые продукты и напитки (фрукты, соки и др.) вызывают резкое изменение pH слюны в кислую сторону: ниже 5,0. Если пища недолго задерживается в полости рта, эти изменения кратковременны и быстро компенсируются буферными системами выделившейся слюны. Более длительное присутствие во рту таких продуктов может оказывать разрушающее действие, например, вызывать эрозию твердых тканей зубов. Напитки, содержащие сахарозу (кока-кола, пепси-кола, фанта, лимонад, сладкие газированные напитки), заметно снижают pH зубного налета.

Наиболее ацидогенными в пищевых продуктах являются ди- и моносахариды. Среди них на первом месте стоит сахароза. Ее особая ацидо- и кариесогенность объясняется очень быстрой ферментацией в зубном налете и высокой способностью стимулировать выработку экстрацеллюлярных полисахаридов (рис. 10 . 8 ).

Сахара можно расположить в порядке убывания удельного кислото-продуцирующего потенциала следующим образом:

  1. сахароза;
  2. инвертный сахар;
  3. глюкоза;
  4. фруктоза;
  5. мальтоза;
  6. галактоза;
  7. лактоза.

Длительность и выраженность снижения pH после употребления углеводной пищи во многом определяется такими характеристиками, как время нахождения в полости рта, концентрация сахаров в продукте, состав и количество ротовой микрофлоры, скорость слюноотделения и проглатывания продукта и слюны, частота приема пиши. Уже через 30 с после употребления углеводной пищи концентрация сахара в смешанной слюне резко возрастает, а затем снижается. Уменьшение концентраций происходит в основном за счет адсорбции сахаров в составе микробных полисахаридов. Существенную роль в задержке углеводов во рту играет процесс самоочищения (слюна, язык). Наиболее выраженным ацидогенным потенциалом обладают такие продукты, как сахар, шоколад, изделия из сладкого сдобного теста, кексы, хлеб, шоколадные конфеты, пирожные, карамель, мороженое. Низкой ацидогенностью в сравнении с сахарами обладают коровье и материнское молоко.

Наряду с пищевыми продуктами, вызывающими ацидоз в полости рта, существует немало продуктов, изменяющих КОС в щелочную сторону, к ним относятся орехи, сыр (особенно сорта «Чеддер»), ментол. Это действие объясняется присутствием в них аммоний-содержащих веществ, мочевины и веществ, которые при диссоциации образуют ионы, активно связывающие ионы водорода, вследствие чего pH слюны повышается на 0,5 - 0,7.


Контрольные вопросы

  1. Какие виды патологии КОС вы знаете?
  2. Назовите основные буферные системы.
  3. Какие показатели используют в диагностике нарушений КОС?
  4. Что такое компенсированные и декомпенсированные формы нарушения КОС?
  5. Назовите причины развития дыхательного ацидоза. Какие компенсаторные механизмы формируются при этой форме патологии КОС?
  6. Назовите причины развития метаболического ацидоза. Какие компенсаторные механизмы формируются при данной форме патологии КОС?
  7. Назовите причины развития дыхательного алкалоза. Какие компенсаторные механизмы формируются при этой форме патологии КОС?
  8. Назовите причины развития метаболического алкалоза. Какие компенсаторные механизмы формируются при такой форме патологии КОС?
  9. Как изменяются показатели крови при разных формах нарушения КОС?
  10. Назовите основные формы нарушения КОС в полости рта.
  11. Приведите основные механизмы сдвигов pH в ротовой полости.
  12. Какие существуют принципы диагностики нарушения КОС в полости рта?

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Пищеварение - это совокупность процессов физической и химической переработки пищевых продуктов, превращение их в компоненты, лишенные видовой специфичности и пригодные к всасыванию и участию в обмене веществ.

Типы пищеварения сформировались в процессе развития живых организмов и в настоящее время мы выделяем: внутриклеточное, внеклеточное и мембранное. Внутриклеточное – это гидролиз пищевых продуктов, который осуществляется внутри клеток (у человека этот тип пищеварение очень ограничен, примером его является фагоцитоз). Внеклеточное пищеварение– осуществляется в специальных полостях (ротовой, желудка, кишечника), ферменты, синтезированные секреторными клетками, выделяются во внеклеточную среду (полость). Мембранное – занимает промежуточное положение между вне- и внутриклеточным и осуществляется ферментами, локализованными на структурах мембран кишечных клеток (в зоне щеточной каймы энтероцитов слизистой кишечника).

Основные функции пищеварительно тракта – это секреторная, моторно-эвакуационная, экскреторная, инкреторная, защитная, рецепторная, эритропоэтическая. Секреторная – выработка и выделение железистыми клетками пищеварительных соков (слюны, желудочного, кишечного сока, желчи). Моторно-эвакуационная функция – измельчение пищи, ее перемешивание с соками, продвижение по пищеваврительному тракту. Всасывательная функция – перенос конечных продуктов переваривания, воды, солей, витаминов через эпителий пищеварительного тракта в кровь или лимфу. Экскреторная функция – выделение из организма неусвоенных компонентов пищи, некоторых продуктов обмена, солей тяжелых металлов, лекарственных веществ. Инкреторная функция – выделение гормонов, регулирующих функции органов пищеварения. Защитная функция бактерицидное, бактериостатическое, детоксикационное действие. Рецепторная функция– это наличие в пищеварительном тракте многих рецептивных зон для рефлексов системы выделения, кровообращения и других. Эритропоэтическая – заключается в том, что в слизистой желудка, тонкой кишки, печени имеется депо железа, которое принимает участие в синтезе гемоглобина, а также наличие внутреннего фактора Кастла, необходимого для всасывания витамина В 12 , отвечающего за регуляцию эритропоэза.



Процесс пищеварения начинается в ротовой полости . Этот отдел пищеварительного тракта выполняет две функции: специфические и неспецифические. Специфические (или пищеварительные) – функции ротовой полости сводятся к тому, что в ней происходит оценка степени пригодности пищи. Это осуществляется многочисленной группой рецепторов полости рта – хемо-, механо-, термо-, ноцицепторами, вкусовыми. От них информация идет в центральную нервную систему, а от нее к органам полости рта (жевательным мышцам, слюнным железам, языку). Благодаря их действию осуществляется определение вкусовых качеств пищи, механическая обработка пищи, глотание. Здесь же начинается и химическая обработка пищи, главным образом углеводов. В полости рта может происходить и всасывание.

Неспецифические функции ротовой полости – это участие в формировании поведенческих реакций (голод, жажда), терморегуляции, защитных, экскреторных, инкреторных реакциях пищеварительного тракта, а также в артикуляции и речи.

Пищеварение в полости рта осуществляется, прежде всего, благодаря секреторной функции слюнных желез. Секреторная функция слюнных желез обеспечивается функцией трех пар больших (околоушных, подъязычных и подчелюстных) и большого количества мелких желез, рассеянных в слизистой оболочке полости рта. Слюна – это смесь секретов. Если к ней добавить еще эпителиальные клетки, частицы пищи, слизь, лимфоциты, нейтрофилы и микроорганизмы, которые имеются в полости рта, то такая слюна (смешанная со всеми этими компонентами) является уже ротовой жидкостью. Ежедневно продуцируется около 0,5-2,0 литров слюны. Ее рН колеблется около 5,25-8,0.

Слюна содержит до 99,5% воды. В 0,5% плотного остатка имеется много неорганических и органических веществ. Можно сказать, что почти вся таблица Менделеева имеется в слюне (даже золото!). К органическим веществам слюны относят: белки (альбумины, глобулины, аминокислоты), азотсодержащие соединения (мочевина, аммиак, креатин), бактерицидные вещества (лизоцим), ферменты (α-амилаза, мальтаза, протеазы, пептидазы, липаза, щелочная и кислая фосфотазы).

Роль слюны в пищеварении заключается в том, что она дает начало химической обработке пищи. Это происходит за счет наличия в ней фермента амилазы, который, действуя на полисахариды (крахмал) расщепляет их до мальтозы. Под влиянием другого фермента слюны (мальтазы) может происходить расщепление мальтозы до глюкозы. Однако ввиду краткосрочности пребывания пищи в полости рта, деятельность этих (и других) ферментов слюны очень ограниченна. Здесь уместно вспомнить одно из правил питания, о котором я Вам говорил на прошлой лекции – тщательное (длительное) пережевывание пищи в полости рта, благодаря чему слюна может более эффективно воздействовать на пищу, находящуюся в полости рта.

Но роль слюны в пищеварении не сводится только к возможной химической обработке пищи. Она принимает участие в подготовке порции пищи к проглатыванию и перевариванию. Во время жевания пища смешивается со слюной и лучше проглатывается. В нейтральной среде слюна равномерно обволакивает зубы, образуя на них особую оболочку. В кислой среде, выделяющийся муцин, покрывает поверхность зубов и способствует образованию зубного налета и камней. Вот почему после приема пищи надо или чистить зубы или прополаскивать полость рта. Слюна является биологической жидкостью для ротовой полости. От ее состава и свойств зависит состояние зубов и слизистой. Изменение объема, химического состава и свойств слюны может лежать в основе многих заболеваний полости рта. Слюна, например, контактируя с эмалью зуба, является для нее источником кальция, фосфора, цинка и других микроэлементов. Если рН слюны 7,0-8,0, то она перенасыщена кальцием, что создает идеальные условия для поступления ионов в эмаль. При подкислении среды (рН – 6,5 и ниже), ротовая жидкость становится дефицитной по содержанию ионов кальция, что способствует выходу его из эмали и развитию кариеса.

По данным химического анализа и даже запаху, цвету слюны можно судить о заболеваниях внутренних органов. Например, при нефрите, язве желудка и 12-перстной кишки в слюне возрастает количество остаточного азота. При инсульте на стороне поражения (кровоизлияния) слюнные железы выделяют много белка.

Все Вы хорошо знаете о повышенной регенеративной способности слизистой полости рта. Быстрое заживление слизистой после ее ранения (а это бывает практически ежедневно) связано не только с тканевым иммунитетом, но и антибактериальными свойствами слюны. Кроме того, в слюне имеются вещества, влияющие на свертывание крови и фибринолиз. Поэтому защитная функция ротовой полости также связана и с этой способностью слюны влиять на местный гемостаз и фибринолиз.

Механизм образования слюны. Слюна образуется как в ацинусах, так и в протоках слюнных желез. В цитоплазме железистых клеток содержатся секреторные гранулы. В ходе секреции размер, количество и расположение гранул изменяется. Они от аппарата Гольджи смещаются к вершине клетки. В гранулах осуществляется синтез органических веществ, которые двигаются с водой через клетку по эндоплазматической сети. В ацинусах осуществляется первый этап образования слюны – первичный секрет , содержащий амилазу и муцин. Содержание ионов в нем незначительно отличается от концентрации их во внеклеточном пространстве. В слюнных протоках состав секрета существенно меняется: ионы натрия активно реабсорбируются, а ионы калия активно секретируются. В результате натрия в слюне становится меньше, а калия больше.

Слюнные железы новорожденного выделяют мало слюны – при сосании около 0,4 мл в минуту, вне сосания еще меньше. Это в среднем в –8 раз меньше, чем у взрослого человека. С 4-х месячного возраста объем саливации увеличивается и к 1 году достигает до 150 мл в день (это около 1/10 секреции взрослого). Активность амилазы в слюне у новорожденных низкая и она повышается во втором полугодии. Достигает уровня взрослых в течение 1-2 лет после рождения.

Регуляция слюноотделения осуществляется сложно - рефлекторным и гуморальным путем. Особое место в регуляции отводится сложно рефлекторному механизму. Он включает в себя условно-рефлекторный и безусловно – рефлекторный. Условно - рефлекторный путь регуляции слюноотделения связан с видом, запахом пищи (у человека и животных), с разговором о ней и другими условными раздражителями (картинки, надписи, символы), связанными с пищевой мотивацией. Безусловно – рефлекторный возникает в ответ на раздражение механо-, хемо-, термо-, вкусовых рецепторов полости рта. От этих рецепторов поток нервных импульсов по волокнам V, VII, IX, X пары черепномозговых нервов устремляется к продолговатому мозгу, где находится центр слюноотделения. От этого центра идут эфферентные волокна данных рефлекторных актов к слюнным железам. Они могут нести информацию к слюнным железам по волокнам симпатического или парасимпатического отделов автономной нервной системы, которые иннервируют слюнные железы. Подъязычные и подчелюстные слюнные железы иннервируются преганглионарными парасимпатическими нервными волокнами, идущими в составе барабанной струны (ветвь VII пары) к соотвествующим ганглиям, расположенным в теле желез. Постганглионарные нервные волокна иннервируют секреторные клетки и сосуды желез. Околоушные слюнные железы иннервируются преганглионарными парасимпатическими волокнами нижнего слюнноотделительного ядра продолговатого мозга, идущими в составе IX пары к ушному узлу. Постганглионарные нервные волокна направляются к секреторным клеткам и сосудам. Симпатическая иннервация представлена преганглионарными нервными волокнами от боковых рогов II-IV грудного сегментов спинного мозга и заканчиваются в верхнем шейном узле, далее идут постганглионарные волокна к слюнным железам.

При раздражении (возбуждении) симпатического нерва выделяется небольшое количество слюны, которая содержит муцин, делающий ее густой и вязкой. При раздражении парасимпатического нерва – наоборот, слюна становится жидкой и ее много.

В регуляции слюноотделения принимают участие также передние и задние группы ядер гипоталамуса.

Рефлекторная регуляция слюноотделения не является единственной, хотя и основной. На секрецию слюны оказывает влияние и гуморальный механизм. Он связан с действием таких гормонов, которые выделяют гипофиз, поджелудочная и щитовидная железа, половые. Обильное отделение слюны возникает вследствие раздражения слюноотделительного центра угольной кислотой. Выделение слюны может быть стимулировано вегетотропными фармакологическими веществами – пилокарпином, прозерином, атропином.

Образование слюны может и уменьшаться. Это может быть связано с болевыми и эмоциональными реакциями, с лихорадочными состояниями, при систематическом употреблении снотворных, при сахарном диабете, анемии, уремии, заболеваниях слюнных желез.

Моторная функция полости рта заключается в откусывании, измельчении, перетирании, смешивании пищи со слюной, формировании пищевого комка и глотании. Основная часть этой моторной функции полости рта осуществляется в результате жевания.

Жевание – это сложный акт, заключающийся в последовательных сокращениях жевательных мышц, движений нижней челюсти, языка, мягкого неба. Жевательные мышцы прикрепляются одним концом к неподвижной части черепа, а другим – к единственно подвижной кости черепа – нижней челюсти. При сокращении они обуславливают изменение положения нижней челюсти по отношению к верхней челюсти. Близки по своим функциям к жевательным мышцам и мимические мышцы. Они принимают участие в захватывании пищи, удерживании ее в преддверии полости рта, замыкании ее при жевании. Особенно важны они при сосании у грудных детей и при приеме жидкой пищи. В осуществлении акта жевания определенная роль отводится и языку, который принимает активное участие в перемешивании пищи, определению ее места для размельчения на зубах.

Акт жевания по механизму своего осуществления частично произвольный, частично – рефлекторный. Человек может произвольно замедлить или участить жевательные движения, изменить их характер. Откусывание и пережевывание пищи совершается при смыкании (контакте, окклюзии) зубов верхней челюсти с зубаими нижней челюсти. Нижняя челюсть– совершает ритмические движения в трех основных направлениях: вертикальном, саггитальном, транверзальном. Жевание начинается с того, что после оценки принимаемой пищи, пищевой кусочек раздражает находящиеся в полости рта осязательные, температурные, вкусовые, болевые рецепторы. Кроме того, благодаря обонянию, возникающие в этих рецепторах импульсы поступают по известным Вам уже нервным стволам (мы их подробно рассматривали при изучении регуляции слюноотделения) в продолговатый мозг, где находится центр жевания. Оттуда по второй и третьей ветвям тройничного нерва, лицевому, языкоглоточному и подъязычному нервам импульсы направляются к жевательным мышцам. Одновременно с измельчением пищи происходит и ее смачивание слюной для лучшего проглатывания. Степень измельчения пищи контролируется рецепторами слизистой полости рта. Непищевые элементы при этом выталкиваются языком (кости, камни, бумага и др.). Надо помнить, что пища в полости рта должна быть тщательно обработана механически, это является мерой профилактики очень многих заболеваний не только пищеварительного тракта.

В грудном возрасте процессу жевания соответствует сосание, которое обеспечивается рефлекторным сокращением мышц рта и языка.

Глотание – это сложный рефлекторный акт, при помощи которого пища переводится из ротовой полости в желудок. Акт жевания представляет собой цепь последовательных взаимосвязанных этапов. Ротовая произвольная фаза глотания заключается в том, что от общей массы пищи, находящейся в полости рта, отделяется небольшой комок, который движением языка прижимается к твердому небу. Челюсти при этом сжимаются, а мягкое небо поднимается, закрывая вход в хоаны. Одновременно происходит сокращение небно-глоточных мышц. В результате этих процессов образуется перегородка, которая перекрывает проход между ротовой полостью и полостью носа. Язык, продвигаясь назад, нажимает на небо и продвигает пищевой комок в глотку. Вследствие этого пищевой комок проталкивается в глотку. Вход в гортань закрывается надгортанником, голосовая щель также закрывается, предотвращая попадание пищевого комка в трахею. Как толлько комок пищи попал в глотку, передние дужки мягкого неба сокращаются и вместе с корнем языка не дают пищевому комку вернуться в полость рта. Глоточно-непроизвольная фаза глотания начинается тогда, когда пищевой комок продвинулся кзади, а глоточно-пищеводный сфинктер, закрывающий в условиях покоя вход в пищевод, открывается. Его мышцы расслабляются и давление в нем понижается, пищевой комок проходит в пищевод и сфинктер вновь закрывается в связи с повышением давления в нем. Такая реакция предотвращает забрасывание пищевого комка из пищевода в глотку. Пищеводная непроизвольная фаза глотания заключается в перемещении пищевого комка от орального его отдела к кардиальному.

Процесс глотания как рефлекторный акт осуществляется благодаря раздражению, локализованных в слизистой оболочке мягкого неба и глотки рецепторных окончаний тройничного нерва, верхнего и нижнего гортанных, языкоглоточного. Центр глотания расположен в продолговатом мозгу рядом с дыхательным центром и находится с ним в реципрокных отношениях. При возбуждении центра глотания деятельность дыхательного центра затормаживается, дыхание в этот момент прекращается и это предотвращает попадание частиц пищи в дыхательные пути. Афферентные пути акта глотания – волокна верхнего и нижнего глоточного, возвратного и блуждающего нерва. Они направляют нервные импульсы к мышцам, принимающим участие в глотании.

Ротовая полость является начальным звеном рефлекторных реакций, влияющих на пищеварение в желудке и кишечнике. Раздражение рецепторов полости рта стимулирует образование желудочного сока, моторную функцию желудка. От продолжительности акта жевания зависит секреция желудка и поджелудочной железы. Чем меньше жевание, тем ниже кислотность желудочного сока. Слизистая ротовой полости и язык – это зеркало не только пищеварительного тракта. На них «видны» проблемы, которые могут возникнуть в желудке, почках и других органах

Лекция 23

Пищеварение в желудке

После того, как пища пройдет соответствующую обработку в полости рта, она попадает в желудок. В нем, смешанная со слюной, пища находится от 2 до 10 часов. В желудке она подвергается химической и механической обработке. Эти процессы в желудке возможны в связи с особенностью его функций. Они заключаются в следующем. Прежде всего, пища в желудке депонируется . Желудок – это резервуар пищевых масс. В нем они смешиваются с желудочным соком. Желудок обладает экскреторной функцией. Она заключается в том, что с желудочным соком выделяются некоторые метаболиты – мочевина, мочевая кислота, креатин, креатинин, а также вещества, поступающие в организм извне (соли тяжелых металлов, йод, фармакологические препараты). Его инкреторная функция сводится к образованию гормонов, принимающих участие в регуляции деятельности желудочных и других пищеварительных желез (гастрин, гистамин, соматостатин, мотилин и другие). Для желудка характерна возможность всасывания воды, лекарственных веществ, алкоголя. Важной функцией желудка является защитная , заключающаяся в том, что желудочный сок обладает бактериоцидныи и бактериостатическим действием. Кроме того, он может обеспечить возврат пищи (рвота) обратно при ее недоброкачественности, предупреждая ее попадание в кишечник.

Однако основными функциями желудка, естественно, являются - секреторная и моторная.

Секреторная деятельность желудка осуществляется желудочными железами, продуцирующими желудочный сок. Они представлены тремя группами клеток: главными (принимают участие в выработке ферментов), обкладочными (или париетальными) – вырабатывают соляную кислоту и добавочными (выделяющими мукоидный секрет – слизь).

Состав и свойства желудочного сока зависит от ряда факторов. Так, сок, выделенный в состоянии покоя (натощак) имеет нейтральную или слабокислую реакцию (рН- 6,0). Этот сок, собственно говоря, состоит из слюны и желудочного, иногда с примесью химуса. При приеме пищи секреция сока усиливается, он содержит основной набор пищеварительных ферментов и соляную кислоту и имеет резко кислую реакцию (рН-0,8-1,5). Общее количество желудочного сока у человека при обычном пищевом режиме составляет 1,5-2,5 л в сутки. Содержание воды в нем до 99,0-99,5%. Плотный остаток представлен органическими и неорганическими веществами (хлоридами, сульфатами, фосфатами и другими веществами). Основной неорганический компонент желудочного сока это соляная кислота. Органическая часть желудочного сока – это ферменты, мукоиды (например, гастромукопротеид).

Секреция соляной кислоты связана с активацией желудочной карбангидразы. Соляная кислота играет важную роль в пищеварении. Она способствует превращению пепсиногена в пепсин и обеспечивает оптимальную реакцию среды для действия пищеварительных ферментов. Денатурирует белки и вызывает их набухание. Обеспечивает бактериостатические свойства желудочного сока. Она створаживает молочные продукты и нейтрализует ферменты слюны. Способствует переходу пищи из желудка в 12-перстную кишку, стимулирует моторную деятельность желудка. Она способствует образованию гормонов пищеварительного тракта (гастрина, секретина).

Ферменты желудочного сока в основном влияют на гидролиз белков до альбумоз и пептинов (с образованием даже небольшого количества аминокислот). В желудочном соке выделено 7 видов пепсиногенов , которые под влиянием соляной кислоты переходят в пепсины. Основными пепсинами желудочного сока являются: пепсин «А» – расщепляет белки до полипептидов при рН желудочного сока 1,5-2,0; пепсин «В» - разжижает желатину, белки соединительной ткани при рН до 5,0; пепсин «С» - действует при рН желудочного сока 3,2-3,5 и пепсин «Д» – расщепляет казеин молока

Желудочный сок содержит липазу (расщепляет эмульгированные жиры на глицерин и жирные кислоты при рН- 5,9-7,9), которой мало у взрослых, а у детей она расщепляет до 59% жира молока.

Кроме ферментов желудочный сок содержит муцин (слизь), предохраняющий слизистую желудка от аутолиза под воздействием соляной кислоты и пепсинов. В слизи имеются нейтральные мукополисахариды (являются составной частью групповых антигенов крови, фактора роста и антианемического фактора Кастла), сиаломуцины (препятствуют вирусной гемагглютинации), гликопротеины (внутренний фактор Кастла).

Регуляция желудочной секреции осуществляется в три фазы: сложно-рефлекторную, желудочную и кишечную. Сложно-рефлекторная фаза регуляции обусловлена комплексом условных и безусловных рефлексов. Начинается она с условно-рефлекторной, так как вид пищи, ее запах и все, что связано с ее приготовлением (звуки, например) вызывают отделение желудочного сока. Безусловно-рефлекторная фаза начинается в тот момент, когда пища попала в полость рта. Здесь возбуждение, (уже известных Вам из прошлой лекции) рецептивных зон сопровождается потоком информации в бульбарный отдел центра пищеварения (продолговатый мозг) по блуждающим нервам, а от него по секреторным волокнам этих же нервов, к секреторным клеткам. Этот желудочный сок как бы готовит желудок заранее к приему пищи. Он обладает высокой кислотностью и большой протеолитической активностью.

Когда пища попадает в желудок, то отделение желудочного сока продолжается в основном уже за счет рефлекторно-гуморальных механизмов, связанных с деятельностью этого органа. Поэтому эту фазу регуляции называют желудочной. На этом этапе отделение желудочного сока связано с участием блуждающего нерва и местных (интрамуральных) рефлексов, а также благодаря секреции тканевых (местных) гормонов желудка. При действии на слизистую желудка механических и химических раздражителей (пища, соляная кислота, соли, продукты переваривания) происходит возбуждение чувствительных волокон блуждающего нерва. Они передают информацию в бульбарный центр и по его секреторным волокнам возвращают к железам желудка. Выделяемый на окончании блуждающих нервов ацетилхолни, возбуждает главные и обкладочные клетки желудочных желез, а также способствует выделению прогастрина (последний под влияниемсоляной кислоты становится гастрином и действует на эти клетки). Ацетилхолин также усиливает образование гистамина в слизистой желудка.

Эта фаза желудочной секреции является основной. Но когда пища начинает постепенно переходить в 12-перстную кишку, желудочная секреция продолжается. Это возможно благодаря осуществлению следующей фазы – кишечной. Количество желудочного сока, выделяемого в эту фазу, составляет около 10% от общего объема желудочного сока. Эта фаза является гуморально-химической . Повышение секреции желудочных желез в этот момент связано с поступлением свежей порции пищи, не успевшей пропитаться соляной кислотой. В слизистой 12-перстной кишки образуется энтерогастрин , который также возбуждает желудочную секрецию. В кишечнике одним из факторов, способствующих желудочной секреции, являются также продукты переваривания пищи (особенно белков), которые стимулируют образование гастрина и гистамина.

Однако на каком-то этапе желудочная секреция постепенно угасает. Это, прежде всего, связано с тем, что пища уходит из желудка. Дальнейшее же угнетение желудочной секреции связано с появлением в слизистой 12-перстной кишки антагониста гастрина гормона секретина (он образуется из просекретина под влиянием соляной кислоты). Особенно резко торможение желудочной секреции возникает при поступлении в 12-перстную кишку жиров, а также веществ-пептидов, вырабатываемых в желудочно-кишечном тракте (соматостатин, вазоактивный пептид, холецистокинин, глюкагон и другие). Тормозит желудочную секрецию и гормон энтерогастрон , вырабатываемый слизистой 12-перстной кишки, а также адреналин (норадреналин). Эмоциональные реакции, связанные с повышением тонуса симпатического отдела вегетативной нервной системы, также тормозят желудочную секрецию. Однако не все эмоциональные реакции и эмоциональное возбуждение одинаково влияют на секрецию желудочного сока. Такие реакции, как стресс, ярость могут у отдельных людей вызывать как активацию, так и торможение выделения желудочного сока. Страх и тоска – угнетают секрецию желудочного сока.

Характер и количество желудочного сока зависит от вида пищи. В этом важную роль играют механизмы регуляции. Так, при приеме мяса (белковая пища) в первый час желудочная секреция возрастает и достигает своего максимума к 2 часам. Это происходит за счет рефлекторных реакций, связанных с деятельностью полости рта (вкусовые, органолептические свойства мяса) и белков – бульоны, получаемые при их переваривании в желудке, обладают такими свойствами. Далее секреция желудочного сока начинает постепенно тормозиться и заканчиваться где-то через 8 часов от начала. На углеводную пищу (например, хлеб) реакция относительно выражена в первый час, что связано с теми же причинами, что и на мясо (рекфлекторное выделение желудочного сока на пищевые компоненты, находящиеся в полости рта и желудке). Затем секреция резко уменьшается и на невысоком уровне длится около 10 часов. При действии молока (жира) наблюдается две фазы: тормозная и возбуждающая. Максимум секреции развивается только на третьем часе и может продолжаться до 6 часов.

Секреторная функция желудочных желез имеет не только чисто пищеварительные задачи, но и обеспечивает некоторые другие реакции организма, связанные с нейтральными мукополисахаридами, сиаломуцинами и гликопротеинами (что составляет основу слизи), о чем я Вам говорил выше.

Кислотность желудочного сока у грудных детей ниже, чем у взрослых и связана больше не с соляной, а молочной кислотой. Она минимальна при вскармливании грудным молоком, но увеличивается при смешанном кормлении. Протеолитическая активность желудочного сока с периода новорожденности до конца 1-го года жизни увеличивается в 3 раза, но все равно остается в 2 раза ниже, чем у взрослых. Желудочный сок новорожденных имеет относительно высокую липолитическую активность.

Моторная деятельность желудка. Желудок хранит, согревает, смешивает, размельчает, приводит в полужидкое состояние, сортирует и продвигает по направлению к 12-перстной кишке содержимое с различной скоростью и силой. Все это свершается благодаря двигательной функции, обусловленной сокращением его гладкомышечной стенки. Вне фазы пищеварения желудок находится в спавшем состоянии, без широкой полости между его стенками. Через 45-90 минут периода покоя возникают периодические сокращения желудка, длящиеся 20-50 минут (голодная периодическая деятельность). При наполнении пищей он приобретает форму мешка, одна сторона которого переходит в конус.

Когда желудок наполнен, его моторная функция складывается из нескольких видов движений. В начальный период сокращения возникают перистальтические волны . Они распространяются от пищевода к пилорическому отделу желудка со скоростью 1см/с, длятся 1,5 с и охватывают 1-2 см желудочной стенки. В пилорической части желудка длительность волн составляет 4-6 в минуту и ее скорость возрастает до 3-4 см/с. Эти низкоамплитудные перистальтические движения способствуют перемешиванию пищи с желудочным соком и перемещению его небольших порций в тело желудка. Внутри пищевого комка продолжается расщепление углеводов амилазой слюны. Эти движения в целом продолжаются где-то в пределах одного часа. Периодически возникают сильные и частые сокращения, которые более активно перемешивают пищу с ферментами желудочного сока и перемещают содержимое желудка. Перистальтические волны в пилорическом отделе получили название пропульсивные сокращения. Они обеспечивают эвакуацию содержимого в 12-перстную кишку. Эти волны возникают с частотой 6-7 за минуту.

Состояние и деятельность мускулатуры желудка рефлекторно изменяется при раздражении ротовой полости пищей и отвергаемыми веществами. Употребление жидких и полужидких пищевых веществ и психическое возбуждение рефлекторно тормозят движения желудка и запирают пилорический сфинктер. Твердые пищевые вещества вызывают рефлекторным путем уменьшение движений желудка с рецепторов полости рта.

Жевание сопровождается рефлекторными тоническими сокращениями мускулатуры желудка, а глотание – торможением и ослаблением тонуса гладкой мышцы желудка. Сила сокращений желудка и степень повышения тонуса его мускулатуры зависит от интенсивности жевания и исходного состояния его мускулатуры. Чем больше объем проглатываемого куска, тем больше торможение сокращений желудка.

В обычных условиях пищеварения сокращения желудка возникают в результате механического раздражения и растяжения его стенок пищей. Это воспринимается отростками нейронов нервных сплетений, находящихся в межмышечном и подслизистом слое. Блуждающий нерв усиливает, а симпатический угнетает моторику желудка.

Гуморальными возбудителями моторики желудка являются гастроинтестинальные гормоны – гастрин, мотилин. Моторика усиливается под влиянием серотонина, инсулина. Глюкагон, а также секретин и холецистинин под влиянием кислого содержимого желудка угнетают моторику желудка и эвакуацию пищи из него. Также действуют адреналин, норадреналин, энтерогастрон.

Переход пищи из желудка в 12-перстную кишку осуществляется порционно во время сильных сокращений антрального отдела. Пилорический сфинктер препятствует обратному забрасыванию химуса в желудок. При пустом желудке пилорический сфинктер открыт. Во время пищеварения он периодически открывается и закрывается. Причиной открытия сфинктера является раздражение слизистой оболочки привратиника соляной кислотой. Часть пищи в это время переходит в 12-перстную кишку и реакция в ней вместо щелочной становится кислой, что и вызывает рефлекторное сокращение мускулатуры привратиника и сфинктер закрывается. Это наблюдается при введении жира в 12-перстную кишку, что способствует его задержанию в желудке.

Для перехода пищи из желудка в 12-перстную кишку важны также такие факторы, как консистенция желудочного содержимого (жидкая или полужидкая пища уходит из желудка). Осмотическое давление химуса (гипертонические растворы задерживают эвакуацию и покидают желудок только после разбавления их желудочным соком до концентрации изотонических) и степень наполнения 12-перстной кищки (при ее растяжении эвакуация из желудка задерживается и может совсем прекратиться). В желудке долго задерживается плохо пережеванная и жирная пища. Блуждающий нерв, а также энтерогастрин усиливают переход химуса, симпатический нерв и энтерогастрин – тормозят его.

Содержимое желудка может покидать его и в обратном направлении, Это связано с особенностью работы кардиального сфинктера. Комок пищи, попадая в нижний конец пищевода, раздражает его слизистую, что вызываеи рефлекторное раскрытие кардиального сфинктера, который у взрослых всегда зажимает вход в желудок, поэтому содержимое желудка не может выпасть даже при переворачивании субъекта вниз головой. Сокращение кардиального сфинктера поддерживается рефлекторно со стороны желудка. У маленьких детей отсутствует тонус кардиального сфинктера и поэтому при переворачивании ребенка вниз головой содержимое желудка выбрасывается назад в ротовую полость. Возможен и другой вариант такой реакции. В случае раздражения токсинами или метаболитами рецепторов желудочно-кишечного тракта возникает тошнота - ощущение, связанное с деятельностью центральной нервной системы при значительном повышении возбудимости ретикулярной формации. Тошнота предшествует рвоте и сопровождается вегетативными расстройствами (саливацией, увеличением потоотделения).Рвота защитная реакция, возникающая при возбуждении рвотного центра, структур ретикулярной формации продолговатого мозга, а также импульсации от рецепторов желудочно-кишечного тракта и вестибулярного аппарата. Она может быть обусловлена обонятельными, зрительными, вкусовыми раздражениями, которые возбуждают рвотный центр при повышении внутричерепного давления. Эфферентные влияния по волокнам блуждающего нерва и частично чревного, передаются кишечнику, желудку, пищеводу, а также моторным нервам к мышцам брюшной стенки и диафрагмы. При рвоте поднимается кость и гортань, открывается верхний пищеводный сфинктер, закрывается глотка, поднимается мягкое небо с закрытием хоан. Затем начинается сильное сокращение диафрагмы и брюшной стенки, наконец, расслабляется нижний пищеводный сфинктер и содержимое желудка выбрасывается через пищевод. Акту рвоты предшествует возникновение антиперистальтики, тошнота. Антиперистальтические волны возникают в дистальных отделах пищеварительного тракта и распространяются по тонкой кишке со скоростью 2-3 см/с, возвращая кишечное содержимое в 12-перстную кишку и желудок за 3-5 минут. Рвота возникает рефлекторно при раздражении рецепторов пищеварительного канала и автоматически – при действии через кровь некоторых веществ (токсинов) на нервный центр. Иногда рвоту вызывают сознательно, специально с целью освобождения желудка (например, при отравлениях).

Бывают случаи, когда моторная деятельность желудка расстроена и осуществляется медленно. Важно иметь в виду, что плохое опорожнение желудка – это фактор риска язвообразования.

Моторная периодика желудка натощак у новорожденных отсутствует, что связано с незрелостью нервных регуляторных механизмов. Эвакуация содержимого желудка после кормления ребенка грудным молоком происходит за 2-3 часа. Это определяет частоту кормлений. Питательная смесь с коровьим молоком того же объема при искусственном вскармливании задерживается в желудке дольше – 3-4 часа. Увеличение в пище количества белков и жиров замедляет эвакуацию из желудка до 4,5 –6,5 часов. У грудных детей более выражено торможение эвакуации белками, а у подростков и взрослых – жирами.

Слюна (saliva) - секрет слюнных желез, выделяющийся в полость рта. В полости рта находится биологическая жид­кость, называемая ротовой жидкостью, которая кроме сек­рета слюнных желез, включает микрофлору и продукты ее жизнедеятельности, содержимое пародонтальных карманов, десневую жидкость, десквамированный эпителий, мигрирую­щие в полость рта лейкоциты, остатки пищевых продуктов и т. д. Ротовая жидкость представляет собой вязкую жид­кость с относительной плотностью 1,001-1,017.

В сутки у взрослого человека выделяется 1500-2000 мл слюны. Однако скорость секреции меняется в зависимости от ряда факторов: возраста (после 55-60 лет слюноотделение замедляется), нервного возбуждения, пищевого раздражи­теля. Во время сна слюны выделяется в 8-10 раз меньше - от 0,5 до 0,05 мл/мин, чем в период бодрствования, а при стимуляции - 2,0-2,5 мл/мин. С уменьшением слюноот­деления увеличивается степень поражения зубов кариесом. В практической деятельности стоматолог имеет дело с ро­товой жидкостью, так как она является средой, в которой постоянно находятся органы и ткани полости рта.

Буферная емкость слюны - это способность нейтрализо­вать кислоты и основания (щелочи), за счет взаимодействия гидрокарбонатной, фосфатной и белковой систем. Установ­лено, что прием в течение длительного времени углеводистой пищи снижает, а прием высокобелковой - повышает буферную емкость слюны. Высокая буферная емкость слю­ны относится к числу факторов, повышающих резистент­ность зубов к кариесу.

Концентрация водородных ионов (рН) изучена доволь­но подробно, что обусловлено разработкой теории Мил­лера о возникновении кариеса зубов. Многочисленными исследованиями установлено, что в среднем рН слюны в полости рта в нормальных условиях находится в преде­лах 6,5-7,5. Установлены незначительные колебания рН в течение дня и ночи (снижение в ночное время). Наиболее сильным фактором, дестабилизирующим рН слюны, яв­ляется кислотопродуцирующая активность после приема углеводистой пищи. «Кислая» реакция ротовой жидкости наблюдается очень редко, хотя локальное снижение рН - явление закономерное и обусловлено жизнедеятельностью микрофлоры зубного налета, кариозных полостей, осад­ка слюны.

Состав слюны и ротовой жидкости. Слюна состоит из 99,0-99,4 % воды и 1,0-0,6 % растворенных в ней органи­ческих минеральных веществ. Из неорганических компо­нентов в слюне содержатся кальциевые соли, фосфаты, калиевые и натриевые соединения, хлориды, гидрокарбонаты, фториды, роданиты и др. Концентрация кальция и фосфора подвержена значительным индивидуальным колебаниям (1: -2 и 4-6 ммоль/л соответственно), которые находятся, в ос­новном, в связанном состоянии с белками слюны. Содержа­ние кальция в слюне (1,2 ммоль/л) ниже, чем в сыворотке крови, а фосфора (3,2 ммоль/л) - в 2 раза выше. В ротовой жидкости содержится также фтор, количество которого оп­ределяется его поступлением в организм.

Ионная активность кальция и фосфора в ротовой жидкости является показателем растворимости гидрокси- и фторапати-тов. Установлено, что слюна в физиологических условиях пе­ресыщена по гидроксиапатиту (концентрация ионов 10" 117) и фторапатиту (10" ш), что позволяет говорить о ней как о минерализующем растворе. Следует отметить, что перена­сыщенное состояние в нормальных условиях не приводит к отложению минеральных компонентов на поверхностях зубов. Присутствующие в ротовой жидкости пролин- и тиро-зинобогащенные белки ингибируют спонтанную преципитацию из растворов, пересыщенных кальцием и фосфором.

Заслуживает внимания тот факт, что растворимость гид-роксиапатита в ротовой жидкости значительно увеличивает­ся при снижении ее рН. Значение рН, при котором ротовая жидкость насыщена эмалевым апатитом, рассматривается как критическая величина и, в соответствии с расчетами, подтвержденными клиническими данными, варьируют от 4,5 до 5,5. При рН 4,0-5,0, когда ротовая жидкость не насыще­на как гидроксиапатитом, так и фторапатитом, происходит растворение поверхностного слоя эмали по типу эрозии (Larsen и др.). В тех случаях, когда слюна не насыщена гид­роксиапатитом, но пересыщена фторапатитом, процесс идет по типу подповерхностной деминерализации, что характерно для кариеса. Таким образом, уровень рН определяет характер деминерализации эмали.

Органические компоненты ротовой жидкости многочис­ленны. В ней содержатся белки, синтезируемые как в слюнных железах, так и вне их. В слюнных железах вырабатываются ферменты: гликопротеиды, амилаза, муцин, а также иммуно­глобулины класса А. Часть белков слюны имеет сывороточное происхождение (аминокислоты, мочевина). Видоспецифические антитела и антигены, входящие в состав слюны, соответствуют группе крови. Методом электрофореза выделено до 17 белко­вых фракций слюны.

Ферменты в смешанной слюне представлены 5 основными группами: карбоангидразами, эстеразами, протеолитическими, ферментами переноса и смешанной группой. В настоящее время в ротовой жидкости насчитывают более 60 ферментов. По происхождению ферменты делятся на 3 группы: секре-тируемые паренхимой слюнной железы, образующиеся в процессе ферментативной деятельности бактерий, образую­щиеся в процессе распада лейкоцитов в полости рта.

Из ферментов слюны, в первую очередь, следует выделить L-амилазу, которая в полости рта частично гидролизует угле­воды, превращая их в декстраны, мальтозу, маннозу и др.

В слюне содержатся фосфатазы, лизоцим, гиалуронидаза, кининогенин (калликреин) и калликреинподобная пептида-за, РНКаза, ДНКаза и др. Фосфатазы (кислая и щелочная) участвуют в фосфорно-кальциевом обмене, отщепляя фосфат от соединений фосфорной кислоты и, тем самым, обеспечивая минерализацию костей и зубов. Гиалуронидаза и калликреин изменяют уровень проницаемости тканей, в том числе и эмали зубов.

Наиболее важные ферментативные процессы в ротовой жидкости связаны с ферментацией углеводов и в значитель­ной степени обусловлены количественным и качественным составом микрофлоры и клеточных элементов полости рта: лейкоцитов, лимфоцитов, эпителиальных клеток и др.

Ротовая жидкость как основной источник поступления кальция, фосфора и других минеральных элементов в эмаль зуба влияет на физические и химические свойства эмали зуба, в том числе на резистентность к кариесу. Изменения количества и качества ротовой жидкости имеют важное зна­чение для возникновения и течения кариеса зубов.

Функции слюны

Слюна играет огромную роль в поддержании нормально­го состояния органов и тканей полости рта. Известно, что при гипосаливации, и особенно ксеростомии (отсутствии слю­ны), быстро развивается воспаление слизистой оболочки рта, а спустя 3-6 мес возникает множественное поражение зубов кариесом. Отсутствие ротовой жидкости затрудняет пережевывание и глотание пищи. Функции слюны многооб­разны, но основными из них являются пищеварительная и защитная.

Пищеварительная функция, в первую очередь, выража­ется в формировании и первичной обработке пищевого ком­ка. Кроме того, пища в полости рта подвергается первичной ферментативной обработке, углеводы частично гидролизу-ются под действием L-амилазы до декстранов и мальтозы.

Защитная функция. Осуществляется благодаря много­образным свойствам слюны. Увлажнение и покрытие слизистой оболочки слоем слизи (муцина) предохраняет ее от высыхания, образования трещин и воздействия механических раздра­жителей. Слюна омывает поверхность зубов и слизистую оболочку рта, удаляя микроорганизмы и продукты их мета­болизма, остатки пищи, детриты. Важное значение при этом имеют бактерицидные свойства слюны, выраженные благода­ря действию ферментов (лизоцим, липаза, РНКаза, ДНКаза, опсонины, лейкины и др.).

Свертывающая и фибринолитическая способность слюны поддерживается за счет содержащихся в ней тромбоплас-тина, антигепариновой субстанции, протромбинов, актива­торов и ингибиторов фибринолизина. Эти вещества обладают гемокоагулирующей и фибринолитической активностью, благодаря чему обеспечивается местный гомеостаз, улучша­ются процессы регенерации поврежденной слизистой обо­лочки. Слюна, будучи буферным раствором, нейтрализует поступающие в полость рта кислоты и щелочи. И, наконец, важную защитную роль играют иммуноглобулины, присутствую­щие в слюне.

Минерализующее действие слюны. В основе этого процесса лежат механизмы, препятствующие выходу из эмали ее компо­нентов и способствующие их поступлению из слюны в эмаль.

Кальций в слюне находится как в ионном, так и связанном состоянии. Считают, что в среднем 15 % кальция связано с белками, около 30 % находится в комплексных связях с фосфатами, цитратами и только 5 % - в ионном состоянии. Именно этот ионизированный кальций участвует в процес­сах реминерализации.

В настоящее время установлено, что ротовая жидкость при нормальных условиях (рН 6,8-7,0) пересыщена кальцием и фосфором. При снижении рН растворимость гидроксиапати-та эмали в ротовой жидкости значительно увеличивается.

Например, при рН 6,0 ротовая жидкость становится каль-цийдефицитной. Таким образом, даже незначительные колебания рН, не способные сами по себе вызвать демине­рализацию, могут активно влиять на поддержание динами­ческого равновесия эмали зуба.

Физико-химическое постоянство эмали полностью зависит от состава и кислотно-основного равновесия ротовой жидкости. Главным фактором стабильности апатитов эмали в слюне являются рН и концентрация кальция, фосфата и фторис­тых соединений.

Ротовая жидкость - это лабильная среда, и на ее коли­чественный и качественный состав влияет множество фак­торов и условий, но в первую очередь - состояние организма. С возрастом секреторная функция больших и малых слюнных желез уменьшается. Нарушение слюноотделения происхо­дит также при острых и ряде хронических заболеваний. Так, при заболевании ящуром развивается избыточное вы­деление слюны (до 7-8 л в сутки), что служит одним из важных диагностических признаков. При гепатохолециститах, наоборот, отмечается гипосальвация, и больные жалуются на сухость в полости рта. При сахарном диабете увеличива­ется содержание глюкозы в ротовой жидкости.

Большое влияние на состав и свойства ротовой жидкости оказывает гигиеническое состояние полости рта. Ухудше­ние ухода за полостью рта приводит к увеличению налета на зубах, повышению активности ряда ферментов (фосфа-тазы, аспарагиновой трансаминазы), увеличению осадка слю­ны, быстрому размножению микроорганизмов, что создает условия, особенно при частом приеме углеводов, для проду­цирования органических кислот и изменения рН.

Противокариозное действие слюны. Было установлено, что вскоре после поступления в полость рта твердой угле­водистой пищи концентрация глюкозы в слюне снижается, причем вначале быстро, а затем медленно. Большое значе­ние при этом играет скорость слюноотделения - усиление слюноотделения способствует более активному вымыванию углеводов. При этом не происходит выведения фторидов, так как они связываются с поверхностями твердых и мягких тканей полости рта, высвобождаясь в течение нескольких часов. Благодаря присутствию фторидов в слюне баланс между де- и реминерализацией смещается в сторону последней, что обеспечивает противокариозный эффект. Установлено, что этот механизм реализуется даже при относительно низ­ких концентрациях фторидов в слюне.

Влияние слюны на ускорение выведения глюкозы явля­ется не единственным механизмом снижения поражаемости кариесом. Более выраженное противокариозное действие обеспечивается ее способностью к нейтрализации кислот и щелочей, т. е. буферным эффектом, благодаря присутствию гидрокарбонатов натрия.

Слюна в норме пересыщена ионами кальция, фосфора и гидроксидапатита, соединения которых формируют основу тканей зуба. Степень пересыщенности еще более высока в жидкой фазе зубного налета, которая находится в непос­редственном контакте с поверхностью зуба. Пересыщенность слюны ионами, составляющими основу тканей зуба, обеспе­чивает их поступление в ткани, т. е. является движущей силой минерализации. При снижении рН зубного налета пе­ресыщенное состояние слюны ионами кальция, фосфора и гидроксиапатитов уменьшается, а затем вовсе исчезает.

В реминерализации подповерхностных слоев эмали участву­ет также ряд белков слюны. Молекулы статхерина и кислых, богатых пролином белков, а также некоторых фосфопротеинов, связывающих кальций при снижении рН в зубном налете, освобождают ионы кальция и фосфора в жидкую фазу зуб­ного налета, что поддерживает реминерализацию.

Из других противокариозных механизмов следует ука­зать на образование пленки (пелликулы) на поверхности эмали слюнного происхождения. Эта пленка препятствует прямому контакту эмали с поступающими в полость рта кислотами и, тем самым, исключает выход кальция и фос­фора из ее поверхности.

Особенностью ротовой полости является то, что гомеостаз зависит не только от функционирования тканей, анатомических образований ротовой полости, особенностей состава крови, но и от состава и свойств ротовой жидкости.

Ротовая жидкость – это биологическая жидкость, которая кроме секрет слюнных желез, включает микрофлору и продукты ее жизнедеятельности, содержимое пародонтальных карманов, десневую жидкость, десквамированный эпителий, распад мигрирующих в полость рта лейкоцитов, остатки пищевых продуктов и т.д.

В составе слюны выделяют гингивальную (десневую) жид­кость. К ней относят часть слюны, локализованной в десневой борозде. Химический состав и свойства этой жидкости можно ис­пользовать как тонкий индикатор, характеризующий состояние пародонта. По своему составу десневая жидкость отличается от слюны и крови. Она содержит слущенные эпителиальные клетки, лейко­циты, бактерии, электролиты (Na, К, Мg и др.) и ряд органи­ческих веществ (глюкозу, продукты метаболизма). Относитель­но происхождения десневой жидкости существуют различные точки зрения. Одни авторы относят ее к экссудату, так как у здоровых она практически не обнаруживается, другие - к транссудату. Десневая жидкость , постоянно поступая в полость рта из десневой бороздки или пародонтального кармана, противодействует смещению реак­ции среды в зубном налете, камне и ротовой жидкости. рН десневой жид­кости колеблется в среднем от 7,9 до 8,3. Такие значения поддерживаются высоким уровнем мочевины и аммиака. Непрямое нейтрализующее дей­ствие десневой жидкости на кислоты осуществляется за счет ряда активных противомикробных факторов, содержащихся в ней.

Слюна является наименее изученной и самой недооцененной из всех жидкостей организма. Тем не менее, этот небольшой по объему секрет играет жизненно важную роль в сохранении интеграции тканей полости рта. У взрослого человека за сутки выделяется 1,5-2 л слюны все­ми слюнными железами, если учитывать, что вес их равен 65 г, станет очевидным представление об интенсивности обмена ве­ществ. Сравнение интенсивности обмена веществ слюнных желез с обменом в других органах показывает, что он лишь немного менее интенсивен, чем в почках, и более высок, чем в печени.

Слюна является комплексным секретом. Она первично состоит из секретов больших и малых слюнных желез. В ацинарных клетках их концевых отделов и происходит формирование секрета.

Различают три пары больших слюнных желез - околоушные, поднижнечелюстные и подъязычные, и малые слюнные железы - щечные, губные, язычные, твердого и мягкого неба. Околоушная слюнная железа - самая большая слюнная железа из трех. Выводной проток, открывающийся в преддверии полости рта, имеет клапаны и терминальные сифоны, регулирующие выведение слюны. Являясь органом пищеварительной системы, они выделяют в полость рта серозный секрет. Количество выделяемой слюны изменчиво и зависит от состояния организма, вида и запаха пищи. Клетки околоушной слюнной железы, осуществляя выделительную функцию, выводят из организма различные лекарственные вещества, токсины и др. Поднижнечелюстная слюнная железа - выделяет серозно-слизистый секрет. Выводной проток открывается на подъязычном сосочке. Подъязычная слюнная железа - является смешанной и выделяет серозно-слизистый секрет. Выводной проток открывается на подъязычном сосочке. Слюнные железы кроме общеизвестных функций выполняют недостаточно изученную роль связи с эндокринными органами.

Процесс слюнообразования и нарушение слюноотделения.

Механизмы, образования слюны изучены недостаточно. Вероятно, образование слюны определенного качественного и количественного состава происходит вследствие сочетания фильтрации в слюнные железы компонентов крови (например: альбуминов, иммуногло­булинов С, А, М, витаминов, лекарственных препаратов, гормонов, воды), избирательного выведения части профильтрованных соединений в кровь (например, некоторых белков плазмы крови), дополнительного введения в слюну компонентов, синтезируемых самой слюнной железой в кровь (например, муцинов). Поэтому изменить состав слюны могут как систем­ ные факторы , т.е. факторы изменяющие состав крови (например, поступление фтора с водой и пищей), так и факторы, влияющие на функционирование самих слюнных желез (например, воспаление желез). В целом состав секретируемой слюны качественно и количественно отличается от такового сы­воротки крови. Так, содержание общего кальция в слюне примерно вдвое ниже, а содержание фосфора вдвое выше, чем в сыворотке крови.

Слюноотделение регулируется лишь рефлекторно (условный ре­ флекс на вид и запах пищи). В течение большей части дня, частота нейроимпульсов низкая и это обеспечивает так называемый базовый или "нестимулированный" уровень, тока слюны. При приеме пищи, в ответ на вкусовой и жевательный раздражители, происходит значительное увеличе­ние числа нейроимпульсов и секреция стимулируется. Скорость секреции сме­шанной слюны в состоянии покоя в среднем составляет 0,3-0,4 мл/мин, сти­муляция жеванием парафина увеличивает данный показатель до 1-2 мл/мин. Скорость нестимулированного слюноотделения у курильщиков со стажем до 15 лет до курения – 0,8 мл/мин, после курения – 1,4 мл/мин. Соединения, содержащиеся в табачном дыме (свыше 4 тыс. различных соединений, в том числе около 40 канцерогенов), оказывают раздражающее действие на ткань слюнных желез. Значительный стаж курения приводит к истощению вегетативной нервной системы, в ведении которой находятся слюнные железы.

Местные факторы:

Гигиеническое состояние полости рта, инородные тела в полости рта (протезы)

    химический состав пищи за счет ее остатков в полости рта (нагрузка пищи углеводами увеличивает их содержание в ротовой жидкости)

    состояние слизистой полости рта, пародонта, твердых тканей зубов

Суточный биоритм: ночью секреция слюны снижается, это создает оптимальные условия для жизнедеятельности микрофлоры и ведет к значи­тельному изменению состава органических компонентов. Известно, что скорость секреции слюны опреде­ляет кариесрезистентность: чем выше скорость, тем более устойчивы зубы к кариесу.

Наиболее часто встречающимся нарушением слюноотделения является пониженная секреция (гипофункция). Наличие гипофункции может указывать на побочное действие лекарственного лечения, на системное заболевание (сахарный диабет, диарея, лихорадочные состояния), на гиповитаминоз А, В. Истинное снижение слюноотделения может не только сказаться на состоянии слизистой оболочки полости рта, но также отражать патологические изменения в слюнных железах.

Термин «ксеростомия» относится к ощущению пациентом сухости в полости рта. Ксеростомия редко является единственным симптомом. С ней связаны ротовые симптомы, которые включают повышенную жажду, повышенное потребление жидкости (особенно во время еды). Иногда пациенты жалуются на жжение, зуд в полости рта («синдром горящего рта»), на инфекцию полости рта, на трудности ношения съемных протезов, на ненормальные вкусовые ощущения.

Сухость, выстилающих ротовую полость тканей, является основной чертой гипофункции слюнной железы. Слизистая полости рта может выглядеть истонченной и бледной, потерявший свой блеск, при касании быть сухой. Язык или зеркало могут прилипать к мягким тканям. Также важно увеличение заболеваемости кариесом зубов, наличие ротовой инфекции, особенно кандидомикоза, образование фиссур и долек на спинке языка, иногда припухание слюнных желез.

Повышение слюноотделения возможно при инородных телах в полости рта в промежутках между приемами пищи, повышенной возбудимости вегетативной нервной системы. Уменьшение функциональной активности вегетативной нервной системы ведет к застою и развитию атрофических и воспалительных процессов в органах слюноотделения.

ФУНКЦИИ СЛЮНЫ, которая на 99% состоит из воды и 1%растворимых неорганических и органических соединений.