Возрастные особенности обмена белков. Обмен белков, его возрастные особенности. Регуляция белкового обмена

Ведущее место среди органических элементов организма занимают белки. Они поступают в организм с пищей. На их долю приходится более 50% сухой массы клетки или 15-20% сырой массы тканей.

Функции белков

Белки выполняют ряд важнейших биологических функций:

1. Пластическая или структурная . Белки входят в состав всех клеточных и межклеточных структур. Особенно велика потребность в белке в периоды роста, беременности, выздоровления после тяжелых заболеваний. В пищеварительном тракте белки расщепляются до аминокислот и простейших полипептидов. В дальнейшем из них клетками различных тканей и органов (в частности печени), синтезируются специфические белки, которые используются для восстановления разрушенных и роста новых клеток.

В организме постоянно происходит распад и синтез веществ, поэтому белки организма не находятся в статическом состоянии. Процессы обновления белков в различных тканях имеют неодинаковую скорость. С наибольшей скоростью обновляются белки печени, слизистой оболочки кишечника, а также других внутренних органов и плазмы крови. Медленнее обновляются белки, входящие в состав клеток мозга, сердца, половых желез и еще медленнее – белки мышц, кожи и особенно опорных тканей (сухожилий, костей и хрящей).

2. Двигательная . Все движения обеспечиваются взаимодействием сократительных белков актина и миозина.

3. Ферментативная . Белки регулируют скорость биохимических реакций в процессе дыхания, пищеварения, выделения и т.д.

4. Защитная . Иммунные белки плазмы крови (γ-глобулины) и факторы гемостаза участвуют в важнейших защитных реакциях организма.

5. Энергетическая . При окислении 1 грамма белка аккумулируется 16,7 кДж энергии. Однако в качестве энергетического материала белки используются в крайнем случае. Эта функция белков особенно возрастает во время стрессорных реакций.

6. Обеспечивают онкотическое давление за счет чего, принимают участие в регуляции вводно-солевого баланса организма.

7. Входят в состав буферных систем .

8. Транспортная . Белки транспортируют газы (гемоглобин) гормоны (тиреоидные, тироксин и др.), минеральные вещества (железо, медь, водород), липиды, лекарственные вещества, токсины и др.

Биологическая ценность аминокислот.

Белки это полимерами основными структурными компонентами которых являются аминокислоты. Известно около 80 аминокислот из которых только 20 являются основными. Аминокислоты организма делятся на заменимые и незаменимые . К заменимым аминокислотам, которые синтезируются в организме, относится: аланин, цистеин, глутаминовая и аспарагиновая кислота, кислоты тирозин, пролин, серин, глицин условно аргинин и гистидин. Аминокислоты, которые не могут синтезироваться, но обязательно должны поступать с пищей называются незаменимыми. К ним относятся: лейцин, изойлецин, валин, метионин, лизин, треонин, финилаланин, триптофан; условно – аргинин и гистидин. Для нормального обмена белков эти аминокислоты должны обязательно присутствовать в пище.

В связи с этим белки пищи, содержащие весь необходимый набор аминокислот, в соотношениях обеспечивающих нормальные процессы синтеза называются полноценными . К ним относят преимущественно животные белки, т.к. они способы полностью превращаться в собственные белки организма. Наибольшей биологической ценностью обладают белки яиц, мяса, рыбы, молока. Биологическая ценность растительных белков ниже т.к. часто они не содержат одну или несколько незаменимых аминокислот. Так, неполноценными белками являются желатина , в которой имеются лишь следы цистина и отсутствует триптофан и тирозин; зеин (белок, находящийся в кукурузе), содержащий мало триптофана и лизина; глиадин (белок пшеницы) и гордеин (белок ячменя), содержащие мало лизина.

Отсутствие хотя бы одной из незаменимых аминокислоты в пище приводит к задержке роста ребенка, к ослаблению организма, тяжелым расстройствам в обмене веществ, снижению иммунитета, нарушению функции желез внутренней секреции и другим заболеваниям. Например, недостаток валина – вызывает расстройство равновесия. Многие аминокислоты являются источником медиаторов ЦНС (гамма-аминомасляная кислота выполняет важную роль в процессах торможения и сна).

При смешанном питании, когда в пище есть продукты животного и растительного происхождения в организм поступает необходимый для синтеза белков набор аминокислот это особенно важно для растущего организма.

В сутки в организм взрослого человека должно поступать около 80-100 г белка и обязательно иметь в своем составе не менее 30% белков животного происхождения.

Потребность организма в белке зависит от пола, возраста, климатического региона и национальности. При физической нагрузке взрослый человек должен получать 100-120 г белка, при тяжелом труде – до 150 г.

В случае употребления в пищу только продуктов растительного происхождения (вегетарианство) необходимо, чтобы два неполноценных белка, один из которых не содержит одних аминокислот, а другой – других, в сумме могли обеспечить потребности организма.

Однообразное питание продуктами растительного происхождения у людей вызывает заболевание «квашиоркор». Оно встречается среди населения стран тропического и субтропического пояса Африки, Латинской Америки и Юго-Восточной Азии. Этим заболеванием страдают преимущественно дети в возрасте от 1 года до 5 лет.

Белки вносят незначительный вклад в энергетику мышечной деятельности, поскольку обеспечивают только 10-15 % общего энергопотребления орга­низма. Тем не менее они играют важную роль в обеспечении сократительной функции скелетных мышц и сердца, в формировании долговременной адаптации к физическим нагрузкам, создании определенного композици­онного состава мышц.

Физические нагрузки вызывают изменения в процессах синтеза и рас­пада белков в тканях, особенно в скелетных мышцах и печени, степень вы­раженности которых зависит от интенсивности и длительности физических нагрузок, а также от тренированности организма. Изменение внутриткане­вого обмена белков определяют обычно по концентрации в крови отдель­ных незаменимых аминокислот, которые в организме не синтезируются и образуются при распаде тканевых белков. В качестве специфического по­казателя распада сократительных белков актина и миозина используется 3-метилгистидин.

Однократные физические нагрузки вызывают угнетение синтеза белка и усиление их катаболизма. Так, например, при беге на тредмиле в тече­ние часа скорость синтеза белка в печени снижалась на 20 %, а при пре­дельной работе - на 65 %. Такая закономерность наблюдается и в скелет­ных мышцах. Под воздействием физических нагрузок усиливается распад мышечных белков (преимущественно структурных), хотя отдельные виды нагрузок усиливают распад и сократительных белков.

При систематических физических нагрузках в мышцах и других тканях активируется адаптивный синтез белка, увеличивается содержание струк­турных и сократительных белков, а также миоглобина и многих ферментов. Это приводит к увеличению мышечной массы, поперечного сечения мы­шечных волокон, что рассматривается как гипертрофия мышц. Увеличение количества ферментов создает благоприятные условия для расширения энергетического потенциала в работающих мышцах, что, в свою очередь, усиливает биосинтез мышечных белков после физических нагрузок и улуч­шает двигательные способности человека.

Нагрузки скоростного и силового характера усиливают в большей сте­пени синтез миофибриллярных белков в мышцах, а нагрузки на выносли­вость - митохондриальных ферментов, обеспечивающих процессы аэроб­ного синтеза АТФ. Тип физической нагрузки (плавание, бег) также во мно­гом определяет величину изменений белкового синтеза.

Адаптационные изменения обмена белков при мышечной деятельнос­ти изучались А.А. Виру, В.А. Рогозкиным, Н.Н. Яковлевым и другими уче­ными, которые пришли к заключению, что под влиянием тренировки в ске­летных мышцах происходит адаптивная активация всех основных звеньев синтеза белка , приводящая к общему увеличению клеточного белоксинтезирующего потенциала. В индукции адаптивного синтеза белка при трени­ровке важная роль принадлежит гормонам: глюкокортикоидам, адренали­ну, соматотропину, тироксину, инсулину. Они участвуют в обеспечении пе­рехода срочных адаптивных реакций в долговременную адаптацию.

Н.Н. Яковлевым обобщены возможные пути адаптивного протеиносин-теза в мышцах под влиянием систематической мышечной деятельности (рис. 100). Начало биохимической адаптации связано с повышением активности ряда ферментов и увеличением количества энергетических субстратов. Усиление энергетического обмена ведет к образованию мета­болитов - индукторов белкового синтеза на генетическом уровне. Индук­торами могут служить АДФ, АМФ, креатин, некоторые аминокислоты, цик­лический АМФ и др. Повышение активности генома вызывает усиление процессов трансляции либо синтеза структурных сократительных или фер­ментативных белков, что, в свою очередь, обеспечивает высокую функци­ональную активность мышц тренированного организма при выполнении мышечной работы.

Существенный вклад в энергетику мышечной деятельности, особенно длительной, вносят аминокислоты - продукты распада эндогенных белков. Их количество в тканях во время выполнения длительной физической ра­боты может увеличиваться в 20-25 раз. Эти аминокислоты окисляются и восполняют АТФ либо вовлекаются в процесс новообразования глюкозы и способствуют поддержанию ее уровня в крови, а также уровня гликогена в печени и скелетных мышцах.

У ребенка первоначальное повышение основного обмена происходит до 1,5 лет, затем основной обмен продолжает неуклонно повышаться в абсолютном выражении и закономерно снижается в расчете на единицу массы тела.

Суммарная энергия, поступившая с пищей, распределяется на обеспечение основного обмена, специфически-динамическое действие пищи, потери тепла, связанные с экскрецией, двигательную активность и рост. В структуре распределения энергии различают:

1) Е поступившая (из пищи) = Е депонированная + Е использованная;

2) Е абсорбированная = Е поступившая – Е выведенная с экскрементами;

3) Е метаболизируемая = Е поступившая – Е обеспечения (жизни) и активности, или основных затрат;

4) Е основных затрат равна сумме энергий:

а) основного обмена;

б) терморегуляции;

в) согревающего эффекта пищи (СДДП);

г) затрат на активность;

д) затрат на синтез новых тканей.

Е депонированная – это энергия, затраченная на отложение белка и жира. Гликоген не учитывается, так как его отложение незначительное.


Е депонированная = Е метаболизируемая – Е основных затрат;

Е стоимости роста = Е синтеза новых тканей + Е депонированная в новой ткани.


Главные возрастные различия заключаются в отношении между затратами на рост и на активность, причем затраты на рост имеют наиболее существенное значение для маловесного новорожденного и в течение первого года жизни, у взрослого человека они отсутствуют. Физическая активность требует значительных затрат энергии даже у новорожденного и грудного ребенка, где ее выражением являются сосание груди, беспокойство, плач и крик. При беспокойстве ребенка расход энергии возрастает на 20–60 %, а при крике – в 2–3 раза. При повышении температуры тела на 1 °C повышение основного обмена составляет 10–16 %.

Энергозатраты роста

У детей много энергии затрачивается на пластический обмен (рост). Для накопления 1 г массы тела организму необходимо затратить приблизительно 29,3 кДж, или 7 ккал.


Энергетическая стоимость роста = Е синтеза + Е депонирования в новой ткани.


У недоношенного маловесного ребенка Е синтеза составляет от 0,3 до 1,2 ккал на 1 г, прибавленной к массе тела, у доношенного – 0,3 ккал на 1 г массы тела.

Общая энергия стоимости роста до 1 года = 5 ккал на 1 г новой ткани, после 1 года – 8,7-12 ккал на 1 г новой ткани, или около 1 % суммы калорий питания. Наиболее интенсивен рост во внутриутробном периоде развития. Темп роста продолжает оставаться высоким и в первые месяцы жизни, о чем свидетельствует значительная прибавка массы тела. У детей первых 3 месяцев жизни доля пластического обмена в расходовании энергии составляет 46 %, затем на первом году жизни она снижается, с 4 лет (особенно в пубертантном периоде) при значительном увеличении роста пластический обмен вновь увеличивается. В среднем у детей 6-12 лет на рост расходуется 12 % энергетической потребности. На трудно учитываемые потери (фекалии, пищеварительные соки и секреты, вырабатываемые в стенке пищеварительного тракта, слущивающийся эпителий кожи, волосы, ногти, пот) затрачивается у детей старше года 8 % энергетических затрат. Расход энергии на активность и поддержание постоянства температуры тела изменяется с возрастом ребенка. В течение первых 30 мин после рождения температура тела у новорожденного снижается почти на 2 °C, что вызывает значительный расход энергии. У детей раннего возраста на поддержание постоянной температуры тела при температуре окружающей среды ниже критической (28–32 °C) организм ребенка вынужден тратить 48-100 ккал/(кг х сутки). С возрастом увеличивается абсолютная затрата энергии на эти компоненты. Доля расхода на постоянство температуры тела у детей первого года жизни тем ниже, чем меньше ребенок, затем вновь происходит понижение расхода энергии, так как поверхность тела, отнесенная на 1 кг массы тела, вновь уменьшается. В то же время увеличивается расход энергии на активность. У детей в возрасте 6-12 лет доля энергии, расходуемая на физическую активность, составляет 25 % энергетической потребности, а у взрослого – 33 %. Специфически-динамическое действие пищи изменяется в зависимости от характера питания. Сильнее оно выражено при богатой белками пище, менее – при приеме жиров и углеводов. У детей второго года жизни динамическое действие пищи составляет 7–8 %, у детей более старшего возраста – более 5 %. Расходы на реализацию и преодоление стресса в среднем составляют 10 % от суточного энергетического расхода (см. табл. 13). Даже умеренная недостаточность энергии питания (4–5 %) может стать причиной задержки развития ребенка, делая пищевую энергетическую обеспеченность условием адекватности роста и развития.

Таблица 13. Рекомендации по энергетической ценности питания детей (МЗ России, 1991 г.)

Примеры использования общих возрастных стандартов.

1. Расчетный метод определения основного обмена:

1) до 3 лет; 3-10 лет;10–18 лет;

2) мальчики: Х = 0,249 – 0,127; Х = 0,095 + 2,110; Х = 0,074 + 2,754;

3) девочки: Х = 0,244 – 0,130; Х = 0,085 + 2,033; Х = 0,056 + 2,898.

2. Дополнительные расходы:

1) компенсация повреждений – основной обмен умножается на:

а) при малой хирургии – 1,2;

б) при скелетной травме – 1,35;

в) при сепсисе – 1,6;

г) при ожогах – 2,1;

2) специфически-динамическое действие пищи: + 10 % от основного обмена;

3) физическая активность: прибавляется процент от основного обмена:

а) прикованность к постели – 10 %;

б) сидит в кресле – 20 %;

в) палатный режим больного – 30 %;

4) затраты на лихорадку: на 1 °C среднесуточного повышения температуры тела +10–12 % от основного обмена;

5) прибавка массы тела: до 1 кг в неделю (еще прибавляется 300 ккал/день).

Расчет энергообеспечения ориентирован на ликвидацию дефицита углеводов и жиров при обеспечении необходимыми сопутствующими микронутриентами, такими как калий, фосфаты, витамины группы В (особенно тиамин и рибофлавин), антиоксиданты.

2. Особенности белкового обмена и потребность в белке детей различного возраста. Семиотика нарушений

Белки выполняют в организме различные функции:

1) пластические функции – распад белка с высвобождением аминокислот, в том числе незаменимых;

2) белки – составная часть различных ферментов, гормонов, антител;

3) белки участвуют в поддержании кислотно-щелочного состояния;

4) белки – источник энергии, при распаде 1 г белка образуется 4 ккал;

5) белки осуществляют транспорт метаболитов.

По разнице между азотом пищи и его выделением и мочой, и фекалиями судят о его потреблении для образования новых тканей.

У детей после рождения или маловесных несовершенство усвоения любого пищевого белка может приводить к неутилизации азота. В противоположность взрослым у детей положительный азотистый баланс: количество поступившего азота с пищей всегда превышает его выведение. Уровень ретенции азота соответствует константе роста и скорости синтеза белка.

Свойства пищевых белков, учитываемые при нормировании питания

1. Биодоступность (всасываемость) рассчитывается по формуле:

(N поступивший – N выделенный с калом) х 100 / N поступивший.

2. Чистая утилизация (NPU, %) рассчитывается по формуле:

N пищи – (N стула + N мочи) х 100 / N пищи.

3. Коэффициент эффективности белка – прибавка в массе тела на 1 г съеденного белка в эксперименте.

4. Аминокислотный скор рассчитывается по формуле:

(Данная аминокислота в данном белке в мг х 100) / Данная аминокислота в эталонном белке в мг.

Идеальный белок – женское молоко с утилизацией 94 % и скор 100, и целое яйцо с утилизацией 87 % и скор 100 (см. табл. 14).

Таблица 14. Скорость синтеза белка в различные возрастные периоды

Таблица 15. Рекомендуемое потребление белка для детей (МЗ России, 1991 г.)

Таблица 16. Безопасные уровни потребления белка у детей раннего возраста, г/(кг в сутки))

Безопасный уровень потребления белка – количество, необходимое для удовлетворения физиологических потребностей и поддержания здоровья у детей – выше, чем у взрослых. Усвоение азота организмом зависит как от количества, так и от качества белка – содержания жизненно необходимых аминокислот. Ребенку необходимо в 6 раз больше аминокислот, чем взрослому (см. табл. 16).

Если у взрослых незаменимыми являются 8 аминокислот, то у детей в возрасте до 5 лет их 13. При чрезмерной белковой перегрузке у детей более легко, чем у взрослых, возникают аминоацидемии, что может проявиться задержкой развития, особенно нервно-психического. Дети более чувствительны к голоданию, чем взрослые, дефицит питания приводит к частым инфекциям. Длительная недостаточность белка в рационе питания детей первых 3 лет жизни может вызвать необратимые изменения, сохраняющиеся пожизненно. Определение в плазме содержания общего белка и его фракций отражает процессы его синтеза и распада (см. табл. 17).

Таблица 17. Потребность в эссенциальных аминокислотах (мг на 1 г белка)

Фракции белка также более низкие, синтез альбумина составляет 0,4 г/кг/сутки, у новорожденного процентное содержание альбумина относительно выше, чем у матери. На первом году жизни происходит снижение содержания альбумина. Динамика содержания?-глобулина аналогична таковой альбумина. В течение первого полугодия жизни особенно низкие показатели?-глобулина, что связано с его распадом, синтез собственных глобулинов происходит медленно. Соотношение глобулиновых фракций?-1 – 1, ?-2 – 2, ?– 3, ?– 4 части. При острых воспалительных заболеваниях изменения белковой формулы крови характеризуются увеличением?-глобулинов при нормальном содержании?-глобулинов и уменьшенном количестве альбуминов.

При хроническом воспалении имеет место повышение?-глобулина при нормальном или слегка повышенном содержании?-глобулина, уменьшении альбумина.

Подострое воспаление характеризуется одновременным увеличением?-, ?-глобулинов при снижении содержания альбуминов.

Появление гипергаммаглобулинемии указывает на хронический период болезни, гиперальфаглобулинемия – на обострение. У детей содержание аминокислот приближается к таковым значениям у взрослых. У новорожденных наблюдается физиологическая азотемия с 9 до 70 ммоль/л, к 5-12-му дню уровень достигает такового у взрослого (28 ммоль/л). У недоношенных детей степень азотемии тем выше, чем меньше масса ребенка.

Содержание белка в пище значительно влияет на уровень остаточного азота крови. У взрослого продукты азотистого обмена выводятся с мочой в виде нетоксической мочевины, синтез которой осуществляется в печени. У детей в возрасте до 3 месяцев выделяется 0,14 г/кг в сутки, у новорожденного значительное количество в общем азоте мочи составляет мочевая кислота. Ее избыточное содержание в моче является причиной мочекислых инфарктов почек, которые наблюдаются у 75 % новорожденных.

Дети раннего возраста выводят азот белка в виде аммиака, содержание которого больше, чем у взрослых. В этом возрасте функция печени недостаточна. В этих условиях избыточная белковая нагрузка может привести к появлению токсических метаболитов в крови.

Врожденные заболевания, в основе которых лежит нарушенный метаболизм белков

Аминоацидопатия – дефицит ферментов, участвующих в обмене белков, их более 30 форм.

Клинические проявления:

1) нервно-психические нарушения – отставание нервно-психического развития в виде олигофрении;

2) судорожный синдром, который может появиться в первые недели жизни;

3) изменения мышечного тонуса в виде гипотонии или гипертонии;

4) задержка развития речи;

5) расстройства зрения;

6) изменения кожи (нарушения пигментации кожи: альбинизм, непереносимость солнца, пеллагрическая кожа, экзема, ломкость волос;

7) желудочно-кишечные симптомы (рвота);

8) поражение печени до развития цирроза с портальной гипертензией и желудочно-кишечными кровотечениями;

9) почечная симптоматика (гематурия, протеинурия);

10) анемия, лейкопения, тромбоцитопатии, повышенная агрегация тромбоцитов.

Заболевания, в основе которых лежит нарушение синтеза белков:

1) отсутствие образования конечного продукта – гемофилия (отсутствие синтеза антигемофильного глобулина), афибриногенемия (отсутствие в крови фибриногена);

2) накопление промежуточных метаболитов – фенилкетонурия;

3) второстепенные метаболические пути, могущие становиться основными и перегруженными, а образующиеся в норме метаболиты могут накапливаться в необычно высоких количествах – гемоглобинопатии, которые клинически проявляются спонтанным или вызванным каким-либо фактором гемолиза эритроцитов, увеличением селезенки. Недостаточность сосудистого или тромбоцитарного фактора Виллебранда вызывает повышенную кровоточивость.

3. Особенности углеводного обмена у детей. Семиотика нарушений

Углеводы являются основным источником энергии: 1 г углеводов выделяет 4 ккал, они входят в состав соединительной ткани, являются структурными компонентами клеточных мембран и биологически активных веществ (ферментов, гормонов, антител).

У детей первого года жизни содержание углеводов составляет 40 %, после 1 года оно возрастает до 60 %. В первые месяцы жизни потребность в углеводах покрывается за счет материнского молока, при искусственном вскармливании ребенок также получает сахарозу или мальтозу. После введения прикорма в организм попадают полисахариды (крахмал, гликоген), что способствует выработке амилазы поджелудочной железой начиная с 4 месяцев.

Моносахариды (глюкоза, фруктоза, галактоза) подвергаются резорбции на поверхности кишечных ворсинок слизистой оболочки кишечника, причем с затратой энергии макроэргической связи АТФ. Активность лактазы наиболее низкая среди дисахараз, поэтому чаще наблюдается лактазная недостаточность. Нарушения абсорбции лактозы (молочного сахара), особенно при грудном вскармливании, клинически проявляется диареей, для которой наряду с частым жидким стулом (более 5 раз в сутки) характерны пенистые испражнения кислой реакции. Может развиться дегидратация.

В более позднем возрасте происходит репрессия лактазы, чем объясняется то, что значительное большинство взрослых не переносят натурального молока, а кисломолочные продукты усваивают хорошо. Реже наблюдается врожденная мальабсорбция сахарозы и изомальтозы, что проявляется диареей у детей, находящихся на искусственном вскармливании.

Причины дисахаридазной недостаточности:

1) следствие воздействия повреждающих факторов (таких как энтериты, недостаточность питания, лямблиоз, иммунологическая недостаточность, целиакия, непереносимость белков коровьего молока, гипоксия, желтуха);

2) незрелость щеточной каймы;

3) следствие хирургического вмешательства.

При избытке в продуктах питания глюкозы и галактозы они подвергаются превращению в печени в гликоген. Синтез гликогена начинается на 9-й неделе внутриутробного развития, его быстрое накопление происходит перед рождением, что обеспечивает энергетическую потребность новорожденного первых дней жизни, когда ребенок получает мало молока. К 3-й неделе жизни концентрация гликогена достигает таких же значений у взрослых, но запасы гликогена расходуются быстрее, чем у взрослых. Соотношение интенсивности процессов гликогенеза и гликогенолиза определяет уровень гликемии. Центральным звеном регуляции гликемии является функциональное объединение нервных центров, расположенных в отдельных отделах ЦНС, и эндокринных желез (поджелудочной, щитовидной желез, надпочечников).

В зависимости от дефицита тех или иных ферментов, участвующих в метаболизме гликогена, выделяют различные формы гликогеноза.

I тип – гепаторенальный гликогеноз, болезнь Гирке, характеризуется недостаточностью глюкозо-6-фосфатазы, самый тяжелый вариант. Клинически проявляется после рождения или в грудном возрасте. Характеризуется гепатомегалией, гипогликемическими судорогами, комой, кетозом, селезенка никогда не увеличивается. В дальнейшем происходят отставание в росте, диспропорция телосложения – живот увеличен, туловище удлинено, ноги короткие, голова большая. В перерывах между кормлениями отмечаются бледность, потливость, потря сознания в результате гипогликемии.

II тип – болезнь Помпе, в основе которой лежит недостаточность кислой мальтазы. Клинически проявляется после рождения, такие дети быстро умирают. Наблюдаются гепато– и спленомегалия, мышечная гипотония, сердечная недостаточность.

III тип – болезнь Кори, обусловленая врожденным дефицитом амило-1,6-глюкозидазы – ограниченный гликогенолиз без тяжелой гипогликемии и кетоза.

IV тип – болезнь Андерсена – результат образования гликогена неправильной структуры. Наблюдаются желтуха, гепатомегалия, формируется цирроз печени с портальной гипертензией, осложненный профузными желудочно-кишечными кровотечениями.

V тип – мышечный гликогеноз развивается в связи с дефицитом мышечной фосфорилазы, может проявиться на 3-м месяце жизни, когда обнаруживается, что дети не способны длительно сосать грудь. Наблюдается ложная гипертрофия поперечно-полосатых мышц.

VI тип – болезнь Герца – обусловлен дефицитом печеночной фосфорилазы. Клинически наблюдаются гепатомегалия, отставание в росте, течение благоприятное. Содержание глюкозы в крови – показатель углеводного обмена. В момент рождения гликемия соответствует таковой у матери, с первых часов отмечается падение сахара за счет недостатка контринсулярных гормонов и ограниченность запасов гликогена. К 6-му дню содержание гликогена повышается, но его уровень ниже, чем у взрослого.

После первого года жизни повышение сахара отмечается к 6 годам и к 12 годам, что совпадает с усилением роста детей и высокой концентрацией соматотропного гормона. Суточная доза глюкозы должна составлять от 2 до 4 г/кг массы тела. У детей отмечается более тяжелое течение сахарного диабета, чаще он проявляется в период особенно интенсивного роста. Клинически проявляется жаждой, полиурией, похуданием, повышением аппетита, обнаруживаются гипергликемия и глюкозурия, часто кетоацидоз. В основе заболевания лежит недостаточность инсулина. В сыворотке крови новорожденного и ребенка первого года жизни содержится большое количество молочной кислоты, что указывает на преобладание анаэробного гликолиза (при аэробных условиях расщепления по гликолитической цепи преобладает пировиноградная кислота).

Процесс компенсации избытка лактата заключается в увеличении активности фермента лактатдегидрогеназы, превращающей молочную кислоту в пировиноградную с последующим ее включением в цикл Кребса. У детей по сравнению с взрослыми большее значение имеет пентозный цикл – путь расщепления глюкозы, начинающийся с глюкозо-6-фосфата с более коротким и быстрым образованием большого количества энергии.

Активность ключевого фермента этого цикла – глюкозо-6-фосфатдегидрогеназы – по мере роста снижается.

Несфероцитарная гемолитическая анемия – результат нарушения пентозного цикла расщепления глюкозы. Гемолитические кризы провоцируются приемом медикаментов.

Тромбоастения – результат нарушения гликолиза в тромбоцитах, клинически проявляется повышенной кровоточивостью при нормальном количестве тромбоцитов.

Галактоземия и фруктоземия – результат дефицита ферментов, превращающих галактозу и фруктозу в глюкозу.

Первые симптомы галактоземии выявляются после начала кормления детей молоком, особенно женским, содержащим большое количество лактозы. Появляется рвота, плохо увеличивается масса тела, наблюдаются гепатоспленомегалия, желтуха, катаракта, возможны асцит и расширение вен пищевода, в моче – галактозурия. Из питания необходимо исключить лактозу.

Фруктоземия клинически проявляется аналогично галактоземии, но в более легкой степени (наблюдаются рвота, снижение аппетита, когда детям начинают давать фруктовые соки, подслащенные каши, т. е. при переходе на искусственное вскармливание. В более старшем возрасте дети не переносят мед, содержащий чистую фруктозу.

4. Особенности жирового обмена. Семиотика нарушений жирового обмена

Обмен жиров включает обмен нейтральных жиров, фосфатидов, гликолипидов, холестерина и стероидов. Жиры в организме человека быстро обновляются. Функция жиров в организме:

1) участвуют в энергетическом обмене;

2) являются составным компонентом оболочек клеток нервной ткани;

3) участвуют в синтезе гормонов надпочечников;

4) защищают организм от чрезмерной теплоотдачи;

5) участвуют в транспортировке жирорастворимых витаминов.

Особое значение имеют липиды, входящие в состав клеток, их количество составляет 2–5 % от массы тела без жира. Меньшее значение имеет жир, находящийся в подкожной клетчатке, в желтом костном мозге, брюшной полости. Жир используется в качестве пластического материала, о чем свидетельствует интенсивность его накопления в период критического роста и дифференцировки. Наименьшее количество жира наблюдается в период 6–9 лет, с началом полового созревания вновь отмечается увеличение жировых запасов.

Жиры синтезируются только в организме плода. Синтез жира происходит преимущественно в цитоплазме клеток. Синтез жирных кислот требует наличия гидрогенизированных никотинамидных ферментов, главным источником которых является пентозный цикл распада углеводов. Интенсивность образования жирных кислот будет зависеть от интенсивности пентозного цикла расщепления углеводов.

На запасной жир большое значение оказывает характер вскармливания ребенка. При грудном вскармливании масса тела детей и содержание жира у них меньше, чем при искусственном. Грудное молоко вызывает транзиторное повышение холестерина в первый месяц жизни, что служит стимулом к синтезу липопротеинлипазы. Избыточное питание детей раннего возраста стимулирует образование в жировой ткани клеток, что в дальнейшем проявится склонностью к ожирению.

Различия в химическом составе триглицеридов и жировой ткани у детей и взрослых

У новорожденных в жире содержится относительно меньше олеиновой кислоты и больше пальмитиновой, что объясняет более высокую точку плавления жиров у детей, что следует учитывать при назначении средств для парентерального применения. После рождения резко возрастает потребность в энергии, одновременно прекращается поступление веществ из материнского организма, в первые часы не покрываются даже потребности основного обмена. В организме ребенка углеводных запасов хватает на короткое время, поэтому жировые запасы начинают использоваться сразу, что отражается повышением в крови концентрации неэстерифицированных жирных кислот (НЭЖК) при одновременном снижении уровня глюкозы. Одновременно с возрастанием НЭЖК в крови новорожденных через 12–24 ч начинается увеличение концентрации кетоновых тел, причем отмечается прямая зависимость уровня НЭЖК, глицерина, кетоновых тел от калорийности пищи. Новорожденный покрывает свои энергетические затраты за счет обмена углеводов.

По мере увеличения количества молока, которое получает ребенок, повышения его калорийности до 40 ккал/кг падает концентрация НЭЖК. Концентрация липидов, холестерина, фосфолипидов, липопротеинов у новорожденных низкая, но через 1–2 недели она возрастает, что связано с их поступлением из пищи. Принятые с пищей жиры подвергаются расщеплению и резорбции под влиянием липолитических ферментов желудочно-кишечного тракта и желчных кислот в тонкой кишке. Из-за нерастворимости жиров в крови их транспорт осуществляется в виде липопротеинов.

Превращение хиломикронов в липопротеины происходит под воздействием липопротеинлипазы, кофактором которой является гепарин. Под влиянием липопротеинлипазы происходит отщепление свободных жирных кислот из триглицеридов, которые связываются с альбумином и легко усваиваются. У новорожденных количество?-протеинов значительно больше, b-протеинов – меньше, к 4-му месяцу приближается к значениям у взрослых. В первые часы и дни жизни снижена реэстерификация жирных кислот в стенке кишечника. У детей первых дней жизни нередко наблюдается стеаторея, постепенно в фекалиях снижается количество свободных жирных кислот, что отражает лучшее всасывание жира в кишечнике. У недоношенных новорожденных активность липазы составляет всего 60–70 % активности, обнаруживаемой у детей старше 1 года, у доношенных новорожденных она значительно больше.

Всасывание жира определяется не только активностью липазы, но и желчными кислотами. У недоношенных новорожденных детей выделение желчных кислот печенью составляет лишь 15 % того количества, которое образуется в период полного развития ее функций у детей 2 лет. У доношенных новорожденных эта величина повышается до 40 %. У доношенных детей всасывание жиров из грудного молока осуществляется на 90–95 %, у недоношенных – на 85 %.

При искусственном вскармливании эти показатели снижаются на 15–20 %. Расщепление триглицеридов до глицерина и жирных кислот происходит под влиянием тканевых липаз.

Глицерин фосфорилируется и включается в гликолитическую цепь.

Жирные кислоты подвергаются окислению в митохондриях клеток и подвергаются обмену в цикле Кноопа-Линена, сущность которого состоит в том, что при каждом обороте цикла образуется одна молекула ацетилкоэнзима А. Но организм предпочитает использовать в качестве источника энергии углеводы из-за больших возможностей аутокаталитической регуляции прироста энергии в цикле Кребса. При катаболизме жирных кислот происходит образование промежуточных продуктов – кетоновых тел (b-оксимасляной кислоты, ацетоуксусной кислоты, ацетона). Кетогенность диеты определяется формулой:

(Жиры + 40 % белков) / (углеводы + 60 % белков).

Продукты обладают кетогенным свойством, если это соотношение превышает 2. Склонность к кетозу особенно проявляется в возрасте 2-10 лет. Новорожденные дети более устойчивы к развитию кетоза. Клинически кетоз проявляется ацетонемической рвотой, которая возникает внезапно и может продолжаться несколько дней, характерен запах ацетона изо рта, в моче определяется ацетон. Если кетоацидоз осложняет сахарный диабет, то обнаруживаются гипергликемия и глюкозурия. Содержание общих липидов в крови увеличивается с возрастом, только в течение первого года жизни оно возрастает в 3 раза. У новорожденных относительно высокое содержание нейтральных липидов (лецитина).

Нарушения обмена липидов могут происходить на различных этапах метаболизма

1. Синдром Шелдона развивается при отсутствии панкреатической липазы. Клинически проявляется целиакоподобным синдромом со значительной стеатореей, масса тела увеличивается медленно, встречается относительно редко. Обнаруживаются эритроциты с измененной структурой оболочки и стромы.

2. Синдром Золлингера-Эллисона наблюдается при гиперсекреции соляной кислоты, которая инактивирует панкреатическую липазу.

3. Абеталипопротеинемия – нарушение транспорта жира. Клиника сходна с целиакией (наблюдаются диарея, гипотрофия), в крови содержание жира низкое.

4. Гиперлипопротеинемии.

I тип является результатом дефицита липопротеинлипазы, в сыворотке крови содержится большое количество хиломикронов, она мутная, образуются ксантомы, больные часто страдают панкреатитом с приступами острых болей в животе; ретинопатией.

II тип характеризуется повышением в крови b-липопротеи-нов низкой кислотности со значительным повышением уровня холестерина и нормальным или слегка повышенным содержанием триглицеридов. Клинически определяются ксантомы на ладонях, ягодицах, периорбитально, рано развивается атеросклероз.

III тип – повышение флотирующих b-липопротеинов, высокое содержание холестерина, умеренное повышение триглицеридов. Обнаруживаются ксантомы.

IV тип – повышение пре-b-липопротеинов с увеличением триглицеридов, нормальным или слегка повышенным содержанием холестерина, хиломикроны не увеличены.

V тип отличается повышением липопротеинов низкой плотности. Клинически проявляется болями в животе, хроническим рецидивирующим панкреатитом, гепатомегалией. Гиперлипопротеинемии генетически обусловлены, относятся к патологии переноса липидов.

5. Внутриклеточные липоидозы. У детей наиболее часто встречаются болезнь Нимана-Пика (отложение в ретикулоэндотелиальной системе сфингомиелина) и болезнь Гоше (гексозоцереброзидов). Главное проявление этих болезней – спленомегалия.

5. Особенности водно-солевого обмена и синдромы его нарушения

Ткани и органы ребенка содержат значительно больше воды, чем у взрослого, по мере роста ребенка содержание воды уменьшается. Общее количество воды на третьем месяце внутриутробного развития составляет 75,5 % от массы тела. К рождению у доношенного новорожденного – 95,4 %. После рождения организм постепенно теряет воду, у детей первых 5 лет вода составляет 70 % от массы тела, у взрослого – 60–65 %. Наиболее интенсивно новорожденный теряет воду в период физиологической убыли массы тела за счет испарения при дыхании, с поверхности кожи, экскреции с мочой и меконием, причем потеря 8,7 % воды в этот период не сопровождается клиническим обезвоживанием. Хотя общее количество воды на 1 кг массы тела у детей больше, чем у взрослого, на единицу поверхности тела содержание жидкости у детей значительно меньше. На содержание воды в организме влияют характер питания и содержание жира в тканях, при преобладании углеводов в питании увеличивается гидрофильность тканей, жировая ткань бедна водой (содержит не более 22 %). Химический состав внутриклеточной жидкости и внеклеточной (плазмы крови, интерстициальной жидкости) различен. Интерстициальная жидкость отделена от крови полупроницаемой мембраной, ограничивающей выход белка за пределы сосудистого русла. Каждые 20 мин между кровью и интерстициальной жидкостью проходит количество воды, равное массе тела. Объем циркулирующей плазмы обменивается в течение 1 мин. Объем плазмы с возрастом относительно уменьшается. С возрастом не только уменьшается общее количество воды, но происходит и изменение в содержании внутри– и внеклеточной жидкости. Водный обмен у детей протекает более интенсивно, чем у взрослых. У детей раннего возраста отмечается большая проницаемость клеточных мембран, фиксация жидкости в клетке и межклеточных структурах более слабая. Особенно это касается межуточной ткани. У ребенка внеклеточная вода более подвижна. Высокая проницаемость клеточных мембран определяет равномерное распределение в организме не только жидкости, но и введенных парентерально веществ.

Потребность в воде у детей значительно больше, чем у взрослых.

Таблица 18. Общий баланс воды в физиологическом состоянии ребенка

Состав минеральных солей и их концентрация определяют осмотическое давление жидкости, важнейшие катионы – одновалентные: натрий, калий; двухвалентные: кальций, магний. Им соответствуют анионы хлора, карбоната, ортофосфата, сульфата и др. В целом имеется некоторый избыток оснований, так что рН = 7,4. Электролиты оказывают основное влияние на распределение жидкостей. Такие осмотически активные вещества, как глюкоза и мочевина, в распределении жидкости в организме имеют небольшое значение, так как свободно проникают через сосудистую и клеточную мембраны (см. табл. 19).

Таблица 19. Распределение электролитов в организме

Обмен белков . Белки входят в состав цитоплазмы, гемоглобина, плазмы крови, ферментов, многих гормонов, иммунных тел, поддерживают постоянство водно-солевой среды организма. Белки делятся на полноценные – в них присутствуют все аминокислоты, и неполноценные. Полноценные белки – это животные белки, а неполноценные – это растительные белки (кроме белков картофеля) и желатин. В пищеварительном тракте белки расщепляются на аминокислоты, которые всасываются в кровь. Существуют заменимые аминокислоты – они могут синтезироваться в организме, и незаменимые, которые поступают только с пищей. Белки в организме не откладываются про запас. Обмен белков оценивается по азотистому балансу, так как основой любого белка является азот, который в процессе метаболизма выводится с мочой.

Потребность в белке у растущего организма больше, чем у взрослого. В период роста белок необходим для формирования новых клеток и тканей. Чем меньше возраст ребенка, тем большее количество белка требуется на каждый килограмм массы тела. Так, суточная потребность в белке на 1 кг массы тела ребенка в возрасте от 0 до 1 года составляет 4 – 5 г, от года до 3 лет – 4 – 4,5 г, от 6 до 10 – 2,5 – 3 г, старше 12 лет – 2 – 2,5 г, у взрослых – 1,5 – 1,8 г. Следовательно, дети от 1 до 4 лет должны получать в сутки белка 30 – 50 г, от 4 до 7 лет – около 70 г, с 7 лет – 75 – 80 г. Взрослые должны получать 100 – 118 г/сут, при тяжелом физическом труде 130 – 140 г/сут.

Синтез белка в развивающемся организме преобладает над его распадом. Поэтому для детей характерен положительный азотистый баланс. Существуют оптимальные суточные дозы белков, при которых отмечается максимальная задержка, или ретенция, азота в организме. Например, в возрасте от 1,5 до 3 лет максимальная ретенция отмечается при 4 г белка на 1 кг массы тела. Увеличение количества белка выше этой нормы не сопровождается ростом задержки азота в организме. Ретенция азота зависит также от количественного соотношения белков, жиров и углеводов в питании ребенка. Наилучшая ретенция отмечается в тех случаях, когда это соотношение равно 1:1:4. Особенно необходимо, чтобы дети получали с пищей достаточные количества незаменимых аминокислот. Лизина, который способствует росту и кроветворению, требуется в сутки 3,2 – 4,8 г; суточное потребление триптофана, также необходимого для роста, равно 1 г и т. д. У детей в возрасте от 1 до 3 лет 75% белка, получаемого с пищей, должно быть животного происхождения, 25% – растительного.

С увеличением возраста содержание в пище белков животного происхождения должно уменьшаться, и в 5 лет количество того и другого белка должно быть одинаковым. В пище детей старшего школьного возраста, как и у взрослых, животный белок должен составлять 30%, а растительный – 70%.



Чем меньше возраст детей, тем менее интенсивно идет распад аминокислот до конечных продуктов обмена. Соответственно, у детей первых месяцев жизни выводится с мочой наибольшее количество аминокислот. К концу первого года количество их в моче становится таким же, как и у взрослых.

Азотистый обмен детей характеризуется наличием в их моче креатина, в то время как моча взрослых его не содержит. Считают, что это связано с недостаточным развитием мышц, удерживающих во взрослом состоянии креатин. Только к 17 – 18 годам креатин исчезает из мочи.

Относительное количество мочевины в моче детей до 6 лет возрастает, а затем начинает уменьшаться. Количество мочевой кислоты, также рассчитанное на 1 кг массы тела, с возрастом уменьшается.

Обмен липидов. Поступающие с пищей липиды в желудочно-кишечном тракте расщепляются на глицерин и жирные кислоты. Глицерин всасывается в кровь, жирные кислоты – в лимфу. Из этих веществ, а также из продуктов обмена углеводов и белков в организме синтезируются липиды, которые являются источником энергии. Кроме того, жир является обязательной составной частью цитоплазмы, ядра, клеточной мембраны. Не израсходованный жир откладывается в запас. Некоторые жирные кислоты не синтезируются организмом, поэтому они должны поступать с пищей. К этим кислотам относят линоленовую, линолевую и арахидоновую кислоты, которые содержатся в льняном, конопляном и подсолнечном масле. Конечный продукт обмена жиров – вода и углекислый газ.

Потребность организма детей в липидах тем выше, чем меньше возраст ребенка. В первое полугодие жизни потребность в энергии покрывается за счет жиров на 50%. В этом возрасте на каждый килограмм массы тела требуется 6 – 7 г жиров, в возрасте от 6 месяцев до 4 лет 3,5 – 4 г, в дошкольном и школьном возрасте 2,0 – 2,5 г. В возрасте от 6 месяцев до 4 лет суточная потребность в энергии удовлетворяется за счет жиров на 30 – 40%, а в дошкольном и школьном возрасте на 25 – 30%. Суточное количество жира в пище детей от 1 года до 3 лет должно быть 32,7 г, от 4 до 7 лет – 39,2 г, от 8 до 13 лет – 38,4 г, свыше 14 лет – 47 г. При грудном вскармливании усваивается до 98% жиров молока, при искусственном – 85%. В раннем возрасте не рекомендуется давать детям растительные жиры.

Исследования показали, что во время развития организма количество фосфолипидов в нервной системе увеличивается, а в период старения – уменьшается. Количество нейтральных жиров в организме растет по мере увеличения возраста, что связывают с уменьшением активности соответствующих ферментов. Изменения содержания в организме различных липидов вызывают постепенные нарушения проницаемости и плотности клеточных мембран, что сопровождается ухудшением функции клеток. Предполагают, что это один из механизмов их старения.

Обмен углеводов. Углеводы являются основным источником энергии в организме, они входят в состав нуклеиновых кислот, цитоплазмы. Углеводы участвуют в окислении продуктов белкового и жирового обмена, чем способствуют поддержанию кислотно-щелочного равновесия в организме. Расщепляются углеводы в желудочно-кишечном тракте до глюкозы, которая всасывается в кровь. Распад глюкозы идет с высвобождением энергии. Процесс распада глюкозы может идти двумя путями: аэробным и анаэробным. Неиспользуемая глюкоза откладывается в виде гликогена в печени. Углеводы могут синтезироваться из продуктов распада жиров и белков. Конечные продукты обмена углеводов – вода и СО 2 .

Суточная потребность в углеводах у детей высокая и составляет в грудном возрасте 10 – 12 г на 1 кг веса. В последующие годы потребное количество углеводов колеблется от 8 – 9 до 12 – 15 г на 1 кг массы тела. От 1 года до 3 лет в сутки ребенку надо дать с пищей в среднем 193 г, от 4 до 7 лет – 287 г, от 9 до 13 лет – 370 г, от 14 до 17 лет – 470 г, взрослому – 500 г.

Выносливость к сахару у детей больше, чем у взрослых. У последних глюкоза появляется в моче в случае, если ее потребляется организмом 2,5 – 3 г на 1 кг массы тела, у детей только после потребления 8 – 12 г глюкозы на 1 кг массы тела отмечается ее появление в моче. Это явление связано с тем, что у детей при избытке глюкозы интенсивно синтезируется гликоген, откладывающийся не только в печени, но и в других органах.

Обмен белков

Белки занимают среди всех органических элементов ведущее место, на них приходится более 50% массы всей клетки.

Весь обмен веществ обеспечивается работой ферментов, которые по своей природе являются белками. Все двигательные функции обеспечиваются благодаря сократительным белкам - актину и миозину.

Весь поступающий в организм белок имеет либо пластическое значение - восполнение и новообразование различных структурных компонентов клетки, либо энергетического значение- обеспечение организма энергией, которая образуется при расщеплении белков.

В тканях постоянно протекают процессы распада белка с выделением неиспользованных продуктов обмена и наряду с этим - синтез белков. Таким образом, белки находятся в непрерывном динамическом состоянии: происходит постоянное разрушение и обновление белков. Скорость распада и обновления белка колеблется и может происходить от нескольких минут до 180 дней (в среднем 80 дней).

Для нормального обмена белков необходимо поступление с пищей в организм различных аминокислот. Исключая ту или иную аминокислоту, изменяя количество поступления в организм аминокислот, можно судить о значении для организма тех или иных аминокислот. Десять из двадцати аминокислот (валин, лейцин, гистидин, триптофан, фениаланин, аргинин, метионин, изолейцин, треонин и лизин) называются незаменимыми и не могут синтезироваться человеческим организмом самостоятельно. Остальные десять аминокислот называются заменимыми и способны синтезироваться в организме. Часть аминокислот используется организмом как энергетический материал, т.е. подвергается расщеплению. Сначала образуется аммиак и кетокислоты, в результате дезаминирования и потере группы NH2. Аммиак, будучи токсичным веществом, обезвреживается в печени путем превращения в мочевину, а кетокислоты распадаются на CO2 и H2O.

Если отсутствуют незаменимые аминокислоты синтез белка резко нарушается, наступит отрицательный баланс азота, уменьшается масса тела, останавливается рост.

Не все белки обладают одинаковым аминокислотным составом, поэтому было введено понятие биологической ценности белков пищи. Белки, которые содержат весь набор аминокислот в таком количестве, которое обеспечивает нормальные процессы синтеза, являются белками биологически полноценными. Соответственно, белки, которые не содержат тех или иных аминокислот, либо содержат их в малом количестве, являются неполноценными.

В связи с этим еда человека должна быть не просто богата белками, она должна содержать не менее 30% белков с высокой биологической ценностью.

Биологическая ценность одного белка для разных людей отличается. Вероятно, этот фактор не является постоянным и может изменяться, в зависимости от изначального рациона, интенсивности физической деятельности, возраста, личных особенностей человека.

Азотистый баланс - это соотношение количества азота, который поступил в организм с пищей из вне и выделенного из него. О количестве белка, который подвергся распаду, судят по количеству азота, который был выведен из организма. В 100 г белка содержится 16 г азота. Т.е. выделение организмом 1 г азота соответствует 6,25 белка. За 24 часа из организма взрослого человека выделяется около 3,7 г азота, т.е. 3,7 * 6,25 = 23 г - масса разрушившегося белка. [Агаджанян]

Чем больше белка поступает в организм, тем больше становится выделение азота из организма. При правильном питании у взрослого человека, азот, который поступает в организм равен выводимому из него. Такое состояние получило название азотистого равновесия. Азотистое равновесие возникает при значительных колебаниях содержания в пище белка.

Когда поступление азота превышает его выделение, то говорят о положительном азотистом балансе. При этом синтез преобладает над распадом. При увеличении массы тела всегда наблюдается положительный азотистый баланс. Он бывает во время роста организма, в период тяжелых силовых тренировок, во время беременности, после выздоровления от тяжелых заболеваний.

Белки в организме не откладываются в запас, поэтому если с пищей поступает большое количество белка, то часть идет на пластические цели, а остальной белок - на энергетические.

При белковом голодании даже в случаях, когда поступление в организм углеводов, жиров, воды, витаминов, минеральных солей достаточное, происходит постепенно нарастающая потеря массы тела, которая зависит от того, что затраты тканевых белков, не компенсируются поступление в организм белков. Растущий организм особенно тяжело переносит белковое голодание, у которого в таком случае происходит еще и остановка роста .